Implementation of analytical codifferentiation in MatLab

Authors

  • M.Yu. Andramonov
  • G.Sh. Tamasjan

Keywords:

негладкий анализ
недифференцируемая оптимизация
субдифференциал
супердифференциал
квазидифференциал
кодифференциал

Abstract

An approach to the analytical analysis of formulas with nonsmooth functions is developed on the basis of the codifferential calculus proposed by Demyanov and Rubinov. An application program package is implemented in MatLab. Using this package, it is possible to solve the problems in the fields of economics, mathematical diagnostics, the physics of solids and, first of all, to teach students about the theory and methods of multivalued analysis. A friendly user interface allows one to formulate complex expressions for nonsmooth functions and to obtain an exact or approximate codifferential in the form of a vertex set and, in the two-dimensional case, to represent it in a figure. This package also allows one to deal with complex nonsmooth models and to find extremum points when solving optimization problems.


Published

2007-09-14

Issue

Section

Section 2. Programming

Author Biographies

M.Yu. Andramonov

Kazan Federal University,
Chebotarev Institute of Mathematics and Mechanics

G.Sh. Tamasjan

Kazan Federal University,
Chebotarev Institute of Mathematics and Mechanics


References

  1. Demyanov V.F., Rubinov A.M. Constructive non-smooth analysis. Peter Lang: Frankfurt, 1995.
  2. Иоффе А.Д., Тихомиров В.М. Теория экстремальных задач. М.: Наука, 1974.
  3. Rockafellar R.T. Convex analysis. Princeton University Press: Princeton, 1971.
  4. Кларк Ф. Оптимизация и негладкий анализ. М.: Наука, 1988.
  5. Hiriart-Urruty J.B., Lemarechal C. Convex analysis and minimization algorithms. Vol. 2. Springer-Verlag: Berlin, 1993.
  6. Shor N.Z. Methods of minimizing nondifferentiable functions. Springer-Verlag: Berlin, 1985.
  7. Shor N.Z. Dual estimates in multiextremal problems // J. of Global Optimization. 1995. 7. 75-91.
  8. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
  9. Нестеров Ю.Е. Эффективные методы в нелинейном программировании. М.: Радио и связь, 1989.
  10. Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука, 1980.
  11. Демьянов В.Ф., Рубинов А.М. Основы негладкого анализа и квазидифференциальное исчисление. М.: Наука, 1990. 愦灭;percent432 с.
  12. Демьянов В.Ф. Условия экстремума и вариационное исчисление. М.: Высшая школа, 2005.