Application of a least-squares finite element method to the plane problem of elasticity

Authors

  • I.O. Arushanian
  • G.M. Kobelkov

Keywords:

проекционно-сеточные методы
численный анализ
численные методы
метод наименьших квадратов
теория упругости
задача Стокса
минимизация
краевые задачи

Abstract

An application of a least-squares finite element method to the plane problem of elasticity with two large parameters is considered. An efficient implicit iteration method is proposed for the case of standard triangulation. We also consider a special way of triangulation that allows solving the resulting system of linear algebraic equations by a direct method with the use of fast Fourier transform.


Published

2001-11-26

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.O. Arushanian

G.M. Kobelkov


References

  1. Arushanian I.O., Axelsson O., Kobelkov G.M. Implementation of a least-squares finite element method for solving the Poisson equation. Department of Mathematics, University of Nijmegen, the Netherlands. Report N 9717, 1997.
  2. Arushanian I.O., Kobelkov G.M. Implementation of a least-squares finite element method for solving the generalized Stokes problem. Department of Mathematics, University of Nijmegen, the Netherlands. Report N 9901, 1999.
  3. Arushanian I.O., Kobelkov G.M. Implementation of a least-squares finite element method for solving the Stokes problem with a parameter // Numer. Linear Algebra Appl. 1999. 6. 587-597.
  4. Axelsson O. Iterative solution methods. Cambridge: Cambridge University Press, 1994.
  5. Bochev P., Gunzburger M. Analysis of least-squares finite element methods for the Stokes equations // Mathematics of Computation. 1994. 63. 479-506.
  6. Bramble J.H., Lazarov R.D., Pasciak J.E. A least-squares approach based on a discrete minus one inner product for first order systems // Mathematics of Computation. 1997. 66. 935-955.
  7. Cai Z., Manteuffel T.A., McCormick S.F. First-order system least squares for the Stokes equations with application to linear elasticity // SIAM J. Numer. Anal. 1997. 35, N 5. 1727-1741.
  8. Girault V., Raviart P.-A. Finite element method for Navier-Stokes equations. Berlin: Springer, 1994.
  9. Jiang B.-N., Povinelli L.A. A least-squares finite element method for fluid dynamics // Computer Methods in Appl. Mech. and Engineering. 1990. 81. 13-37.
  10. Jiang B.-N., Povinelli L.A. Optimal least-squares finite element method for elliptic problems // Computer Methods in Appl. Mech. and Engineering. 1993. 102. 199-212.
  11. Кобельков Г.М. Численные методы решения уравнений Навье-Стокса в переменных «скорость-давление» // Вычислительные процессы и системы. М.: Наука, 1991. 8. 204-236.
  12. Кобельков Г.М. Решение задачи жесткого контакта для несжимаемого материала // Журн. вычислит. матем. и матем. физики. 1976. 4. 987-995.