On the path coding of k-faces in an n-cube

Authors

  • G.G. Ryabov Lomonosov Moscow State University

Keywords:

путевое кодирование, комбинаторика, пирамида Паскаля, триангуляция, путевые симплексы, кодирование симплексов

Abstract

Many constructions of topological objects in the form of cubic complexes are related to the mapping into an n-dimensional cube. The description of such mappings is a practical foundation for the algorithms devoted to the computer realization of the constructions under consideration. The combinatorial nature of the objects in use essentially increases the importance of computer representation of the information on building blocks of various dimensions. Some variants of such representations with respect to an n-dimensional cube are discussed.

Author Biography

G.G. Ryabov

References

  1. Кузьмин О.В. Треугольник и пирамида Паскаля: свойства и обобщения // Соровский образовательный журнал. 2000. № 5. 101-109.
  2. Steingrimsson E. Permutations statistics of indexed and poset permutations. Cambridge: MIT-Press, 1992.
  3. Бухштабер В.М., Панов Т.Е. Торические действия в топологии и комбинаторике. М.: Изд-во МЦНМО, 2004.
  4. Гашков С.Б. Системы счисления и их применения. М.: Изд-во МЦНМО, 2004.
  5. Рябов Г.Г. Алгоритмические основы топологического процессора (топокарты) // Труды Всероссийской конф. «Методы и средства обработки информации». М., 2005 (http://lvk.cs.msu.ru).
  6. Ryabov G., Serov V. Simplicial-lattice model and metric-topological constructions // Proc. of the Ninth Conf. on Pattern Recognition and Information Processing. Minsk, 2007. Vol. 2. 135-140.

Published

25-01-2008

How to Cite

Рябов Г.Г. On the Path Coding of K-Faces in an N-Cube // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2008. 9. 16-18

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)