Application of the smoothed particle hydrodynamics method for solving gas-dynamic problems

Authors

  • A.V. Aliev

Keywords:

математическое моделирование
SPH-метод
метод сглаженных частиц
вычислительная астрофизика
газодинамика

Abstract

The modern level of computing technologies makes it possible to perform the mathematical simulation of complicated scientific problems and to study a number of natural phenomena, such as the formation of stars and planetary systems from a protosubstance and their further evolution. One of the most efficient gas-dynamic computation methods for astrophysical simulation is the meshless smoothed particle hydrodynamics method (the SPH-method). The complete Lagrangian nature of this method allows one to conduct simulations over a very wide dynamic range of density, pressure, and temperature. A number of numerical results obtained by the SPH-method are discussed. In order to take into account the gravitation interactions, a hierarchical tree-code method is applied.


Published

2008-02-11

Issue

Section

Section 1. Numerical methods and applications

Author Biography

A.V. Aliev


References

  1. Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: theory and application to non-spherical stars // Monthly Notices of the Royal Astronomical Society. 1977. 181. 375-389.
  2. Harlow F.H. The particle-in-cell method for numerical solution of problems in fluid dynamics // Proc. Symp. Applied Mathematics. 1963. 15. 269.
  3. Springel V. The cosmological simulation code GADGET-2 // Monthly Notices of the Royal Astronomical Society. 2005. 364. 1105-1134.
  4. O’Shea B.W., Bryan G., Bordner J., Norman M.L., Abel T., Harkness R., Kritsuk A. Introducing Enzo, an AMR cosmology application // eprint arXiv: astro-ph/0403044.
  5. Алиев А.В., Тарнавский Г.А. Иерархические SPH-методы для математического моделирования в гравитационной газовой динамике // Сибирские электронные матем. известия. 2007. 6. 376-434 (http://semr.math.nsc.ru).
  6. Тарнавский Г.А., Алиeв А.В. Математическое моделирование: основные сегменты, их особенности и проблемы // Вычислительные методы и программирование. 2007. 8, № 2. 148-161.
  7. Toro E.F. Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Berlin: Springer, 1999.