On modeling of nonrelativistic cylindrical oscillations in plasma
Authors
-
L.M. Gorbunov
-
A.A. Frolov
-
E.V. Chizhonkov
Keywords:
плазменные колебания
кильватерные волны
метод конечных разностей
метод возмущений
уравнения в частных производных
Abstract
In order to study the nonrelativistic cylindrical oscillations in plasma, an initial boundary value problem for a system of nonlinear partial differential equations is formulated. Approximate solutions to this problem are constructed on the basis of a finite-difference method and the numerical analytic perturbation techniques. It is found that the destruction of plasma oscillations is qualitatively similar to the plasma wakefield destruction. The asymptotic lower and upper estimates obtained for the time instant of oscillation destruction are in good agreement with the well-known results.
Section
Section 1. Numerical methods and applications
References
- Ахиезер А.И., Половин Р.В. К теории волновых движений электронной плазмы // Ж. эксперим. и теор. физики. 1956. 30, N 5. 915-928.
- Dawson J.M. Nonlinear electron oscillations in a cold plasma // Phys. Review. 1959. 113, N 2. 383-387.
- Albritton J., Koch P. Cold plasma wavebreaking: propagating of energetic electrones // Phys. Fluids. 1975. 18. 1136-1139.
- Chizhonkov E.V., Gorbunov L.M. Calculation of a 3D axial symmetric nonlinear wakefield // Rus. J. Numer. Anal. Math. Modelling. 2007. 22, N 6. 531-541.
- Esarey E., Sprangle P., Krall J., Ting A. Overview of plasma-based acceleration concepts // IEEE Trans. on Plasma Science. 1996. 24. 252-288.
- Mora P., Antonsen T.M. Kinetic modelling of intense, short laser pulses propagating in tenuous plasmas // Phys. of Plasmas. 1997. 4. 217-229.
- Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- Andreev N.E., Chizhonkov E.V., Gorbunov L.M. Numerical modelling of the 3D nonlinear wakefield excited by a short laser pulse in a plasma channel // Rus. J. Numer. Anal. Math. Modelling. 1998. 13, N 1. 1-11.
- Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.