On modeling of nonrelativistic cylindrical oscillations in plasma

Authors

  • L.M. Gorbunov Lebedev Physical Institute of RAS (LPI RAS)
  • A.A. Frolov Joint Institute for High Temperatures of RAS (JIHT RAS)
  • E.V. Chizhonkov Lomonosov Moscow State University

Keywords:

плазменные колебания, кильватерные волны, метод конечных разностей, метод возмущений, уравнения в частных производных

Abstract

In order to study the nonrelativistic cylindrical oscillations in plasma, an initial boundary value problem for a system of nonlinear partial differential equations is formulated. Approximate solutions to this problem are constructed on the basis of a finite-difference method and the numerical analytic perturbation techniques. It is found that the destruction of plasma oscillations is qualitatively similar to the plasma wakefield destruction. The asymptotic lower and upper estimates obtained for the time instant of oscillation destruction are in good agreement with the well-known results.

Author Biographies

L.M. Gorbunov

A.A. Frolov

E.V. Chizhonkov

References

  1. Ахиезер А.И., Половин Р.В. К теории волновых движений электронной плазмы // Ж. эксперим. и теор. физики. 1956. 30, N 5. 915-928.
  2. Dawson J.M. Nonlinear electron oscillations in a cold plasma // Phys. Review. 1959. 113, N 2. 383-387.
  3. Albritton J., Koch P. Cold plasma wavebreaking: propagating of energetic electrones // Phys. Fluids. 1975. 18. 1136-1139.
  4. Chizhonkov E.V., Gorbunov L.M. Calculation of a 3D axial symmetric nonlinear wakefield // Rus. J. Numer. Anal. Math. Modelling. 2007. 22, N 6. 531-541.
  5. Esarey E., Sprangle P., Krall J., Ting A. Overview of plasma-based acceleration concepts // IEEE Trans. on Plasma Science. 1996. 24. 252-288.
  6. Mora P., Antonsen T.M. Kinetic modelling of intense, short laser pulses propagating in tenuous plasmas // Phys. of Plasmas. 1997. 4. 217-229.
  7. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
  8. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
  9. Andreev N.E., Chizhonkov E.V., Gorbunov L.M. Numerical modelling of the 3D nonlinear wakefield excited by a short laser pulse in a plasma channel // Rus. J. Numer. Anal. Math. Modelling. 1998. 13, N 1. 1-11.
  10. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.

Published

04-03-2008

How to Cite

Горбунов Л.М., Фролов А.А., Чижонков Е.В. On Modeling of Nonrelativistic Cylindrical Oscillations in Plasma // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2008. 9. 58-65

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>