The representation of a wavelet transform of the Gaussian family by a superposition of solutions to partial differential equations
Authors
-
E.B. Postnikov
Keywords:
непрерывные вейвлет-преобразования
вейвлет Морле
гауссовы вейвлеты
уравнение диффузии
уравнения в частных производных
Abstract
The usage of partial differential equations for the evaluation of a wavelet transform with real and complex wavelets and with vanishing higher moments is considered. Contrary to the case of the transform with the standard Morlet wavelet, the sought-for transform can be found as a superposition of solutions to several Cauchy problems with various initial values. These initial values are the products of a transformed function with some power functions whose exponents vary from zero to the maximal number of a vanishing moment.
Section
Section 1. Numerical methods and applications
References
- Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005.
- Bacry E., Muzy J.F., Arneodo A. Singularity spectrum of fractal signals from wavelet analysis: exact results // J. Stat. Phys. 1993. 70. 635-674.
- Haase M., Lehle B. Tracing the skeleton of wavelet transform maxima lines for the characterization of fractal distributions // Fractals and Beyond. Singapore: World Scient., 1998. 241-250.
- Haase M., Widjajakusuma J., Bader R. Scaling laws and frequency decomposition from wavelet transform maxima lines and ridges // Emergent Nature. Singapore: World Scient., 2001. 365-374.
- Cho C.S., Ha S.-W., Kim J.H., Yon T.-H., Nam K.G. Optoelectronic difference-of-Gaussian wavelet transform system // Opt. Eng. 1997. 36, N 12. 3471-3475.
- Постников Е.Б. Вычисление непрерывного вейвлет-преобразования как решение задачи Коши для системы дифференциальных уравнений в частных производных // Ж. вычисл. матем. и матем. физики. 2006. 46, № 1. 77-82.
- Абрамовиц М., Стиган И. Справочник по специальным функциям. М: Наука, 1979.