On the kernel of the discrete gradient operator

Authors

  • E.A. Muravleva Lomonosov Moscow State University

Keywords:

задача Стокса, метод Узавы, дискретный аналог оператора градиента, нетривиальное ядро, полуразнесенные сетки

Abstract

When solving the Stokes problem on semistaggered grids, a discrete analog of the gradient operator with a nontrivial kernel arises. This fact may lead to loss of accuracy in a discrete solution and to some difficulties in the iterative solution of the problem. One of the approaches to the construction of efficient numerical methods on semistaggered grids is based on the assumption that the structure of the gradient kernel is known. In this paper, a system of linearly independent functions from the discrete gradient kernel is constructed for the two- and three-dimensional cases. The numerical results allow one to assume that the resulting system forms the kernel basis.

Author Biography

E.A. Muravleva

References

  1. Голуб Д. Матричные вычисления. М.: Мир, 2001.
  2. Каханер Д., Молер К., Нэш С. Численные методы и математическое программное обеспечение. М.: Мир, 1998.
  3. Муравлева Е.А. Исследование вырожденной схемы для задачи Стокса // Тр. XXVIII конф. молодых ученых механико-математического факультета МГУ. М.: Изд-во Моск. ун-та, 2006.
  4. Чижонков Е.В. Релаксационные методы решения седловых задач. М.: ИВМ РАН, 2002.
  5. Boland J.M., Nicolaides R.A. On the stability of bilinear-constant velocity-pressure finite elements // Numer. Math. 1984. 44. 219-222.
  6. Vincent C., Baret G. On the stability of the Stokes operator discretized by the Q1-P0 finite element method // Commun. Numer. Meth. Eng. 1998. 14. 959-961.
  7. Dai X., Cheng X. The iterative penalty method for Stokes equations using Q1-P0 element // Appl. Math. Comput. 2008
    doi 10.1016/j.amc.2007.11.041

Published

02-04-2008

How to Cite

Муравлева Е.А. On the Kernel of the Discrete Gradient Operator // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2008. 9. 93-100

Issue

Section

Section 1. Numerical methods and applications