On the stability of the Cauchy problem for the Helmholtz equation in a three-dimensional cylinder
Authors
-
A.N. Demidova
-
Ya.M. Zhileikin
Keywords:
Helmholtz equation
Cauchy problem
stability with respect to initial data
finite-difference schemes
wave equations
Abstract
Some stability conditions for the solution to the Cauchy problem for the Helmholtz equation are proposed and substantiated for initial data in relation to the spectral distribution of initial functions and their perturbations. The problem is considered in a semi-infinite three-dimensional cylinder. The stability of a finite-difference scheme used to solve the Cauchy problem for the Helmholtz equation in a three-dimensional rectangular cylinder is studied. Several constraints imposed on the steps of this finite-difference scheme to ensure its stability are obtained. Keywords: Helmholtz equation, Cauchy problem, stability with respect to initial data, finite-difference schemes, wave equations
Section
Section 1. Numerical methods and applications
References
- Лаврентьев М.М. О постановке некоторых некорректных задач математическойфизики // Некоторые вопросывычислительной и прикладной математики. Новосибирск: Наука, 1966. 258–276.
- Завадский В.Ю. Вычисление волновых полей в открытых областях и волноводах. М.: Наука, 1972.
- Барановская М.А., Жилейкин Я.М. Численное решение задачи Коши для уравнения Гельмгольца //Матема-тические методы решения задач волновой физики. М.: Изд-во Моск. ун-та, 1990. 44–51.