Calculations of equilibrium properties of quantum systems using the expanded ensemble MC technique

Authors

  • M.A. Voznesenskiy
  • P.N. Vorontsov-Velyaminov
  • A.P. Lyubartsev

Keywords:

Monte-Carlo method
quantum statistics
path integral
density matrix

Abstract

The expanded ensemble Monte-Carlo method with the Wang-Landau algorithm is used to calculate the ratio of partition functions for each class of permuations in the problem of several interacting particles (fermions) in an external field. The complete partition function and the average energy for a system of indentical particles is obtained at finite temperatures down to their low values. Keywords: Monte-Carlo method, quantum statistics, path integral, density matrix


Published

2008-05-23

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

M.A. Voznesenskiy

P.N. Vorontsov-Velyaminov

A.P. Lyubartsev

Stockholm University,
Division of Physical Chemistry, Arrhenius Laboratory
Universitetsvägen 10A, SE-106 91 Stockholm, Sweden


References

  1. Фейнман Р., Хиббс А.К вантовая механика и интегралы по траекториям. М.: Мир, 1968.
  2. Takahashi M., Imada M.Mo nte Carlo calculation of quantum systems // J. Phys. Soc. Jpn. 1984. 53, N 3. 963–974.
  3. Newman W.H., Kuki A.Im proved methods for path integral Monte Carlo integrationin fermionic systems // J.Chem. Phys. 1992. 92, N 2. 1409–1417.
  4. Lyubartsev A.P., Vorontsov-Velyaminov P.N. Path-integral Monte Carlo method in quantum statistics fora systemofNidentical fermions // Phys. Rev. A. 1993. 48, N 6. 4075–4083.
  5. Фейнман Р.С татистическая механика. Курс лекций. M.: Мир. 1975.
  6. Vorontsov-Velyaminov P.N., Nesvit M.O., Gorbunov R.I. Bead-Fourier path-integral Monte Carlo method appliedto systems of identical particles // Phys. Rev. E. 1997. 55, N 2. 1979–1997.
  7. Lyubartsev A.P., Martsinovski A.A., Shevkunov S.V., Vorontsov-Velyaminov P.N. New approach to Monte Carlocalculation of the free energy: Method of expanded ensembles // J. Chem. Phys. 1992. 96, N 3. 1776–1783.
  8. Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states // Phys.Rev. Lett. 2001. 86, N 10. 2050–2053.
  9. Vorontsov-Velyaminov P.N., Lyubartsev A.P. Entropic sampling in the path integral Monte Carlo method //J. Phys.A: Math. Gen. 2003. 36, N 1. 1–9.
  10. Takahashi M., Imada M.Mo nte Carlo calculation of quantum systems. II. Higher order correction // J. Phys. Soc.Jpn. 1984. 53, N 11. 3765–3769.
  11. Herman M.F., Bruskin E.J., Berne B.J. On path integral Monte Carlo simulations // J. Chem. Phys. 1982.76,N 10. 5150–5155.
  12. Поляков Е.А., Воронцов-Вельяминов П.Н. Квантовый газ во внешнем поле при конечных температурах. Точноевыражение для плотности и возбуждeнные состояния // Вычислительные методы и программирование. 2007. 8, № 2. 185–202 (https://num-meth.rcc.msu.ru/).