Spatial approximation by the subgrid method in the filtration problem for a viscous compressible fluid in a porous medium

Authors

  • N.S. Melnichenko
  • N.S. Melnichenko

Keywords:

linear systems
subgrid method
fluid filtration
control-volume method
parallel computing

Abstract

The filtration problem for a viscous compressible multiphase fluid mixture in an anisotropic porous medium is considered. For this problem, the spatial approximation is discussed in the case of nonorthogonal unstructured grids. A new method of multipoint approximation is proposed. This method is free from the following defects of other similar methods: the orientation effect and the appearance of nonphysical fluxes. Some numerical results obtained on the basis of realistic problems are given. Keywords: linear systems, subgrid method, fluid filtration, control-volume method, parallel computing


Published

2008-06-19

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

N.S. Melnichenko

N.S. Melnichenko


References

  1. Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids // Computational Geosciences. 2002. 6, N 3, 4. 405-432.
  2. Aavatsmark I., Barkve T., Boe O., Mannseth T. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods // SIAM J. on Scientific Computing. 1998. 19. 1700-1716.
  3. Aavatsmark I., Barkve T., Boe O., Mannseth T. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results // SIAM J. on Scientific Computing. 1998. 19. 1717-1736.
  4. Aziz K., Settari A. Petroleum reservoir simulation. London: Applied Science Publishers, 1979.
  5. Nordbotten J.M., Aavatsmark I. Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media // Computational Geosciences. 2005. 9, N 1. 61-72.
  6. Zhangxin C., Guanren H., Yuanle M. Computational methods for multiphase flows in porous media. Philadelphia: SIAM, 2006.
  7. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
  8. Колдоба А.В., Повещенко Ю.А., Попов Ю.П. Об одном алгоритме решения уравнения теплопроводности на неортогональных сетках // Дифференциальные уравнения. 1985. T. XXI, № 7. 1273-1276. j
  9. Самарский А.А. Теория разностных схем. М.: Наука, 1977.

 How to cite   
Kochikov I.V., Kovtun D.M. and Tarasov Yu.I. A new software for processing the radial symmetric diffractograms // Numerical Methods and Programming. 2008. 9, No 1. 12–18.

TEX CODE:

Kochikov I. , Kovtun D. and Tarasov Y. , (2008) “A new software for processing the radial symmetric diffractograms,” Numerical Methods and Programming, vol. 9, no. 1, pp. 12–18.

TEX CODE:

I. Kochikov, D. Kovtun and Y. Tarasov, “A new software for processing the radial symmetric diffractograms,” Numerical Methods and Programming 9, no. 1 (2008): 12–18

TEX CODE:

Kochikov I. , Kovtun D. and Tarasov Y. A new software for processing the radial symmetric diffractograms. Numerical Methods and Programming. 2008;9(1):12–18..

TEX CODE:



Featured articles

A.I. Sukhinov, Yu.V. Belova, A.E. Chistyakov