Markov processes in the dynamics of primitive triangulations in spaces R3 and R4
Keywords:
Key words: primitive triangulation
Diophantine equations
Markov chains
coding of triangulated cubic evolvents
spectrum of vertex polyhedrons
Bose-Einstein statistics
Abstract
Lattice models and simplicial complexes continue to play an important role in theoretical physics and gain an increasing interest in connection with the application of dynamic triangulations to the construction of quantum gravity models. With the advent of modern supercomputers, the piecewise-linear complexes and the bistellar transformations become a basis of numerical methods in combinatorial geometry and topology. In this paper, random flips of primitive triangulations in space R³ with vertices from an integer set Z³ are considered as Markov chains and their properties of periodicity, decomposability, and ergodicity are studied. As a result, an asymptotic behavior of the triangulated space as a whole is determined. Similar methods are proposed for primitive triangulations in space R⁴.
Section
Section 1. Numerical methods and applications
References
- Steingrimsson E. Permutations statistics of indexed and poset permutations. Cambridge: MIT-Press, 1992.
- Negami S. Diagonal flips of triangulations on surfaces // Yokohama Math. J. 1999. 47. 1-40.
- Малышев В.А. Вероятность вокруг квантовой гравитации: планарная гравитация // Успехи матем. наук. 1999. 54, № 4. 3-46.
- Collet P., Eckman J.-P. Dynamics of triangulations // J. of Statistical Physics. 2005. 121, N 5. 1073-1081.
- Ambjorn J., Jurkevich J., Loll R. Reconstructing the Universe // Phys. Review D 72. 2005. Paper N 064014.
- Бухштабер В.М., Панов Т.Е. Торические действия в топологии и комбинаторике. М.: Изд-во МЦНМО, 2004.
- Рябов Г.Г. Алгоритмические основы топологического процессора // Тр. II Всероссийской научной конференции «Методы и средства обработки информации». М.: Изд-во Моск. ун-та, 2005. 53-58.
- Рябов Г.Г., Серов В.А. Отображения целочисленных множеств и евклидовы приближения // Вычислительные методы и программирование. 2007. 8, № 1. 14-23.
- Рябов Г.Г. О путевом кодировании k-граней в n-кубе // Вычислительные методы и программирование. 2008. 9, № 1. 20-22.
- Ryabov G., Serov V. Simplicial-lattice model and metric-topological constructions // Proc. of the IX Conf. on Pattern Recognition and Information Processing. Minsk, 2007. Vol. 2. 135-140.
- Pябов Г.Г., Серов В.А. Компьютерные комбинаторно-топологические построения и их преобразования // Информационные технологии и вычислительные системы. 2008. № 2. 69-80.