An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form

Authors

  • A.N. Bogolyubov
  • A.A. Panin

Keywords:

elliptic equations
projection methods
finite element method
error estimate

Abstract

An error estimation algorithm for approximate solutions to elliptic equations is proposed. This algorithm is based on the Nakao method and is also suitable in the case when the bilinear form of the problem under study is not coercive. For Helmholtz-type equations, another method is developed on the basis of the Nakao method to obtain a more accurate estimate. Some numerical results are given to illustrate the error estimates calculated by these methods.


Published

2008-12-27

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.N. Bogolyubov

A.A. Panin


References

  1. Марчук Г.И., Агошков В.И. Введение в проекционно-сеточные методы. М.: Наука, 1981.
  2. Сьярле Ф. Метод конечных элементов для эллиптических задач. М.: Мир, 1980.
  3. Репин С.И. Двусторонние оценки отклонения от точного решения для равномерно эллиптических уравнений // Труды Санкт-Петербургского математического общества. 9. Новосибирск: Научная книга, 2001. 148-179.
  4. Репин С.И., Фролов М.Е. Об апостериорных оценках точности приближенных решений краевых задач для уравнений эллиптического типа // Журн. вычисл. матем. и матем. физики. 2002. 42, № 12. 1774-1787.
  5. Functional a posteriori error estimates for PDE’s (verb|http://www.pdmi.ras.ru/ repin/ApoPDE.pdf|).
  6. Nakao M.T., Hashimoto K., Watanabe Y. A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems // Computing. 2005. 75, N 1. 1-14.
  7. Nakao M.T., Hashimoto K. Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications (http://hdl.handle.net/2324/3405).
  8. Nakao M.T. Numerical verification methods for solutions of ordinary and partial differential equations // Numer. Funct. Anal. and Optimiz. 2001. 22, N 3. 321-356.
  9. Nakao M.T., Yamamoto N., Kimura S. On the best constant in the error bound for the H^1_0-projection into piecewise polynomial spaces // J. Approx. Theory. 1998. 93, N 3. 491-500.
  10. Natterer F. Berechenbare Fehlerschranken für die Methode der Finiten Elemente // International Series of Numerical Mathematics. Vol. 28. Basel: Birkhäuser Verlag, 1975. 109-121.
  11. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973.
  12. Рид М., Саймон Б. Методы современной математической физики. 1. Функциональный анализ. М.: Мир, 1977.