A generalization of Calderon’s theorem. Discretization of continuous wavelet transforms

Authors

  • Ya.M. Zhileikin Lomonosov Moscow State University

Keywords:

wavelets, Fourier transform, convolution operator

Abstract

Calderon’s theorem is generalized to the set of periodic functions belonging to the space L2(0,1). The discretization of the direct and inverse wavelet transforms are realized on the basis of the discrete Fourier transform, which allows one to develop efficient computational algorithms. The Mexican hat wavelet is considered as an example. The work is supported by the Russian Foundation for Basic Research (project no.~08-01-00285).

Author Biography

Ya.M. Zhileikin

References

  1. Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005.
  2. Чуи К. Введение в вэйвлеты. М.: Мир, 2001.
  3. Фрейзер М. Введение в вэйвлеты в свете линейной алгебры. М.: БИНОМ, 2007.
  4. Жилейкин Я.М., Осипик Ю.И. О погрешности и алгоритмах численной реализации непрерывных вэйвлет-преобразований // Журн. вычисл. матем. и матем. физики. 2005. 45, № 12. 2091-2101.

Published

27-12-2008

How to Cite

Жилейкин Я.М. A Generalization of Calderon’s Theorem. Discretization of Continuous Wavelet Transforms // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2008. 10. 49-55

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)