Systematization of wavelet transforms

Authors

  • A.V. Pereberin

Keywords:

вейвлет-преобразования
численный анализ
численные методы
обрабатка сигналов
вейвлеты
дискретные преобразования
вейвлет-анализ

Abstract

This paper is an attempt to systemize some frequently used variants of wavelet transforms. The following classification features are proposed: a type of input signals (discrete or continuous); a dimension of signals; the presence of redundant information; the norm preservation, etc. Various kinds of representations used for wavelet transforms and several methods used commonly for processing the signals defined on bounded intervals are introduced and compared.


Published

2001-06-08

Issue

Section

Section 3.

Author Biography

A.V. Pereberin


References

  1. Бердышев В.И., Петрак Л.В. Аппроксимация функций, сжатие численной информации, приложения. Екатеринбург: УрО РАН, 1999.
  2. Левкович-Маслюк Л.И. Дайджест вейвлет-анализа в двух формулах и 22 рисунках // Компьютерра. 1998. № 8,(236). 31-37.
  3. Новиков И.Я., Стечкин С.Б. Основные конструкции всплесков // Фундаментальная и прикладная математика. 1997. 3, № 4. 999-1028.
  4. Переберин А.В. Построение изолиний с автоматическим масштабированием // Вычислительные методы и программирование. 2001. 2, № 1. 118-128.
  5. Петухов А.П. Введение в теорию базисов всплесков. СПб.: Изд-во СПбГТУ, 1999.
  6. Bonneau G.-P., Hahmann S., Nielson G.M. BLaC-wavelets: a multiresolution analysis with non-nested spaces // IEEE Visualization’96 Proceedings. 1996. 43-48.
  7. Chui C.K. An introduction to wavelets. New York: Academic Press, 1992.
  8. Chui C.K. (Editor) Wavelets: a tutorial in theory and applications. New York: Academic Press, 1992.
  9. Chui C.K., Quak E. Wavelets on a bounded interval // Numerical Methods in Approximation Theory. 1992. 9. 53-75.
  10. Coifman R.R., Meyer Y., Wickerhauser V. Wavelet analysis and signal processing wavelets // Wavelets and their applocations. Boston: Jones and Barlett, 1992. 153-178.
  11. Daubechies I. Ten lectures on wavelets. Philadelphia: SIAM, 1992.
  12. Daubechies I., Sweldens W. Factoring wavelet transforms into lifting steps // IEEE Trans. Image Processing. 2000. 9, N 3. 480-496 (http://cm.bell-labs.com/who/wim/papers/).
  13. Finkelstein A., Salesin D.H. Multiresolution curves // SIGGRAPH’94 Proceedings. 1994. 261-268.
  14. Gross M.H., Staadt O.G., Gatti R. Efficient triangular surface approximations using wavelets and quadtree data structures // IEEE Trans. on Visualization and Computer Graphics. 1996. 2, N 2. 130-143.
  15. Lee S., Lawton W., Shen Z. An algorithm for matrix extension and wavelet constructions // Mathematics of Computation. 1996. 65, N 214. 723-737.
  16. Jawerth B., Sweldens W. An overwiew of wavelet based multiresolution analyses // SIAM Rev. 1994. 36, N 3. 377-412 (http://cm.bell-labs.com/who/wim/papers/).
  17. Kovaucevic J., Sweldens W. Wavelet families of increasing order in arbitrary dimensions // IEEE Trans. Image Processing. 2000. 9, N 3. 480-496 (http://cm.bell-labs.com/who/wim/papers/).
  18. Mallat S. A wavelet tour of signal processing. New York: Academic Press, 1998.
  19. Stollnitz E.J., Derose T.D., Salesin D.H. Wavelets for computer graphics. Theory and applications. San Francisco: Morgan Kaufmann, 1996.
  20. Sweldens W. The lifting scheme: a construction of second generation wavelets // SIAM J. Math. Anal. 1996. 3, N 2. 186-200 (http://cm.bell-labs.com/who/wim/papers/).
  21. Sweldens W., Schroder P. Building your own wavelets at home // Wavelets in Computer Graphics. ACM SIGGRAPH Course Notes. 1996 (http://cm.bell-labs.com/who/wim/papers/).
  22. Wojtaszczyk P. A mathematical introduction to wavelets. Cambridge: Cambridge University Press, 1997.