On the metric-topological computing in the constructive world of cubic structures

Authors

  • G.G. Ryabov
  • V.A. Serov

Keywords:

n-cube
cubants and cross-cubants
monoid
Hausdorff-Hamming metric
concurrent digitwise operations
supercomputing
3D-sphere

Abstract

A constructive approach to the algebraic (monoidal) representation of cubic structures is developed. An expansion of a cubant set by the introduction of cross-cubants is proposed. The cubant metric (Hausdorff-Hamming metric) and topological properties are studied. Some peculiarities of the implementation of concurrent computer operations on monoids are considered as a tool of supercomputing. This work was supported by the Russian Foundation for Basic Research (project N 09-07-12135).


Published

2010-10-26

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

G.G. Ryabov

V.A. Serov


References

  1. Baez J., Stay M. Phisics, topology, logic and computation: a Rosetta Stone // arXiv: 0903.0340v3 [quant-ph]. 6 June 2009.
  2. Coecke B. Quantum picturalism // arXiv:0908.1787v1[quant-ph]. 13 August 2009.
  3. Lauda A. Frobenius algebras and planar open string topological field theories // arXiv:math(0508.349v1)[math QA]. 18 August 2005.
  4. Manin Yu.I. Classical computing, quantum computing and Shor’s factoring algorithm // arXiv: quant-ph/9903008v1. 2 March 1999.
  5. Manin Yu.I. Renormalisation and Computing I. Motivation and Background // arXiv:0904.4921v2[math. QA]. 25 August 2009.
  6. Stanley R. Combinatoric and commutative algebra. Boston: Birkhauser, 1996.
  7. Бухштабер В.М. Кольцо простых многогранников и дифференциальные уравнения // Тр. МИАН. 2008. 263. 18-43.
  8. Marshall J., Adcroft A., Campin J-M., Hill C. Atmosphere-Ocean modeling exploiting fluid isomorphisms. Boston, MIT. 2002.
  9. Рябов Г. Марковские процессы в динамике примитивных триангуляций в пространствах R^3 и R^4 // Вычислительные методы и программирование. 2009. 10, № 1. 5-12.
  10. Рябов Г. О четверичном кодировании кубических структур // Вычислительные методы и программирование. 2009. 10, № 2. 154-161.
  11. Рябов Г. Алгебраическое представление кубических структур и супервычисления // Программные системы и инструменты. Вып. 10. М.: Изд-во Моск. ун-та, 2009. 12-26.