A parallel mesh partitioning tool
Keywords:
graph partitioning
mesh partitioning
parallel computing
Abstract
The geometric parallelism is often used for the numerical solution of problems in the field of mathematical physics on distributed memory systems. As a result, there arises the problem of balanced mesh distribution among processors. This problem can be reduced to the graph partitioning problem. The parallel decomposition of large triangular and tetrahedral meshes is the aim of this paper. A parallel mesh partitioning tool is developed on the basis of the incremental algorithm for graph partitioning and the recursive coordinate bisection algorithm. The work was supported by the Russian Foundation for Basic Research (projects N 05-01-00750, N 08-07-00458, and N 09-01-12022).
Section
Section 1. Numerical methods and applications
References
- Hendrickson B., Kolda T.G. Graph partitioning models for parallel computing // Parallel Computing. 2000. 26. 1519-1534.
- Karypis G., Kumar V. A Parallel algorithm for multilevel graph partitioning and sparse matrix ordering // J. of Parallel and Distributed Computing. 1998. 48. 71-95.
- Walshaw C., Cross M. Parallel optimization algorithms for multilevel mesh partitioning // Parallel Computing. 2000. 26. 1635-1660.
- Якобовский М.В. Инкрементный алгоритм декомпозиции графов // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия «Математическое моделирование и оптимальное управление». Вып. 1(28). Нижний Новгород: Издательство ННГУ, 2005. 243-250.
- Hendrickson B., Leland R. A multilevel algorithm for partitioning graphs // Technical Report SAND93-1301. Sandia National Laboratories. Albuquerque, 1993.
- Кнут Д.Э. Искусство программирования. Сортировка и поиск. 3. М.: Издательский дом «Вильямс», 2001.
- Якобовский М.В. Параллельные алгоритмы сортировки больших объемов данных // Фундаментальные физико-математические проблемы и моделирование технико-технологических систем. Вып. 7. М.: Янус-К, 2004. 235-249.