Modeling of interaction between a moving structure and a fluid flow using near-wall damping coefficients


  • A.A. Aksenov
  • A.S. Shishaeva


Navier-Stokes equations
Fluid-Structure Interaction
explicit splitting method
artificial compressibility
damping coefficients
numerical stability


The interaction between a moving structure and a fluid flow is modeled using the FlowVision-HPC computational fluid dynamics software. The damping coefficients are introduced in near-wall cells in order to increase the stability of coupled integration of the equations describing the fluid flow and the construction dynamics. Two flow situations are considered under different conditions. The stability range of the numerical solution obtained without the use of the damping coefficients is estimated. This range can be extended due to the dumping coefficients. The optimal values of the damping coefficients are found.





Section 1. Numerical methods and applications

Author Biographies

A.A. Aksenov

• Technical Director

A.S. Shishaeva

• Head of Testing Group


  1. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек. М.: Наука, 2006.
  2. Келдыш М.В. Избранные труды. М.: Наука, 1985.
  3. Van Es G.W. H. Hydroplaning of modern aircraft tires. National Aerospace Laboratory (NLR), Technical Paper TP-2001-242. Amsterdam, 2001.
  4. Макаров Г.В. Уплотнительные устройства. Л.: Машиностроение, 1973.
  5. Черкасский В.М. Насосы, вентиляторы, компрессоры. М.: Энергоатомиздат, 1984.
  6. Чернавский С.А. Подшипники скольжения. М.: МАШГИЗ, 1963.
  7. Scotti C.M., Shkolnik A.D., Muluk S.C., Finol E.A. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness // BioMedical Engineering OnLine. 2005. 4-64.
  8. Hubner B., Walhorn E., Dinkler D. A monolithic approach to fluid-structure interaction using space-time finite elements // Computer Methods in Applied Mechanics and Engineering. 2004. 193. 2087-2104.
  9. Piperno S., Farhat C., Larrouturou B. Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory, and two-dimensional application // Comput. Meths. Appl. Mech. Eng. 1995. 124, N 1-2. 79-112.
  10. Piperno S., Farhat C. Partitioned procedures for the transient solution of coupled aeroelastic problems. Part II: Energy transfer analysis and three-dimensional applications // Comput. Meths. Appl. Mech. Eng. 2001. 190, N 24-25. 3147-3170.
  11. Forster C. Robust methods for fluid-structure interaction with stabilized finite elements. Bericht Nr. 51. Institut fur Baustatik und Baudynamik der Universitat Stuttgart. Stuttgart, 2007.
  12. Sachhs S.M., Stetnel D.C., Schafer M. Implicit partitioned coupling with global multigrid in fluid-structure interaction // Proc. of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal. 14-17 June 2010.
  13. Raback P., Ruokolainen J., Lyly M., J ä rvinen E. Fluid-structure interaction boundary conditions by artificial compressibility // ECCOMAS CFD 2001. Swansea. 4-7 September 2001.
  14. Aksenov A., Iliine K., Schelayev A., Garipov A., Luniewsky T., Shmelev V. Modeling fluid structure interaction for aerospace applications // Proc. of Abaqus User Conference 2007. Paris, France. 2006.
  15. Aksenov A. A., Dyadkin A.A., Pokhilko V.I. Overcoming of barrier between CAD and CFD by modified finite volume method // Proc. of 1998 ASME Pressure Vessels and Piping Division Conference. San Diego, ASME PVP. 1998.