Bayesian network prediction: algorithm and software implementation
Authors
-
E.D. Maslennikov
-
V.B. Sulimov
Keywords:
Bayesian network
belief network
belief update
expert system
join tree
junction tree
probabilistic interference
probabilistic propagation
Abstract
This paper is devoted to the clustering belief updating algorithm using the junction tree as a tree graph representation of Bayesian networks. The algorithm is applicable for predictions based on a learned Bayesian network as well as for supporting an exact network learning process, for example, the EM algorithm. The constructing steps and the principles of work with the junction tree are specified. The software implementation of the algorithm is also considered.
Section
Section 2. Programming
References
- Mittal A., Kassim A. Bayesian network technologies: application and graphical models. New York: IGI Publishing, 2007.
- Pourret O., Na"im P., Marcot B. Bayesian networks: a practical guide to applications. New York: Wiley, 2008.
- Sebastiani P., Ramoni M.F., Nolan V., Baldwin C.T., Steinberg M.H. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia // Nature Genet. 2005. 37, N 4. 435-440.
- Jensen F.V., Nielsen T.D. Bayesian networks and decision graphs. New York: Springer, 2007.
- Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society. 1997. 39, N 1. 1-38.
- Bender J., Koller D., Russel R., Kanazava K. Adaptive probabilistic networks with hidden variables // Machine Learning. 1997. 29, N 2-3. 213-244.
- Henrion M. Propagating uncertainty in Bayesian networks by logic sampling // Uncertainty in Artificial Intelligence. Vol 2. J. Lemmer and L. Kanal, Eds. Amsterdam: North-Holland, 1988. 149-163.
- Fung R., Chang K.-C. Weighting and integrating evidence for stochastic simulation in Bayesian networks // Proc. of the Fifth Conference on Uncertainty in Artificial Intelligence (UAI-89). Amsterdam: North-Holland, 1989. 475-482.
- Shachter R., Peot M. Simulation approaches to general probabilistic inference on belief networks // Proc. of the Fifth Workshop on Uncertainty in Artificial Intelligence (UAI-89). Amsterdam: North-Holland, 1989. 311-318.
- Pearl J. Probabilistic reasoning in intelligent systems. San Mateo: Kaufmann, 1988.
- Korb K., Nicholson A. Bayesian artificial intelligence. London: Chapman &; Hall/CRC, 2004.
- Huang C., Darwiche A. Inference in belief networks: a procedural guide // Approximate Reasoning. 1996. 15, N 3. 225-263.
- Тулупьев А., Николенко С., Сироткин А. Байесовские сети: логико-вероятностный подход. СПб.: Наука, 2006.