Comparison of two- and three-dimensional models of turbulent flow in the drive cone cavity of a gas turbines engine

Authors

  • K.N. Volkov

Keywords:

drive cone cavity
gas turbine
turbulence
compressibility
rotation

Abstract

The simulation of turbulent flow of viscous compressible fluid in the cone cavity of a high pressure turbine is considered. The Reynolds-averaged Navier-Stokes equations and the equations of the Spalart-Allmaras turbulence model are used in computations. The numerical results based on the two-dimensional (axisymmetric model) formulation of the problem and based on the three-dimensional (model in the form of a sector with periodic boundary conditions in the circumferential direction) formulation of the problem are compared. Some small 3D details of the model, such as bolts and flanges, and their influence on the flowfield are taken into account in the computational model. The flow structure (distributions of flow quantities, location and number of recirculation regions, flow direction) obtained in the cavity for various models is compared.


Published

2010-12-27

Issue

Section

Section 1. Numerical methods and applications

Author Biography

K.N. Volkov


References

  1. Owen J.M., Rogers R.H. Flow and heat transfer in rotating disc systems. Vol. 1. Rotor-stator systems. Taunton: Research Studies Press, 1989.
  2. Owen J.M., Rogers R.H. Flow and heat transfer in rotating-disc systems. Vol. 2. Rotating cavities. Taunton: Research Studies Press, 1995.
  3. Волков К.Н., Емельянов В.Н. Течения и теплообмен в каналах и вращающихся полостях. Москва: Физматлит, 2010.
  4. Yamada Y., Ito M. Frictional resistance of enclosed rotating cones with superposed throughflow // J. of Fluids Engineering. 1979. 101. 259-264.
  5. May N.E., Chew J.W., James P.W. Calculation of turbulent flow for an enclosed rotating cone // J. of Turbomachinery. 1994. 116, N 3. 548-554.
  6. Long C.A., Turner A.B., Kais G., Tham K.M., Verdicchio J.A. Measurement and CFD prediction of the flow within an HP compressor drive cone // J. of Turbomachinery. 2003. 125, N 1. 165-172.
  7. Gan X., Mirzaee I., Owen J.M., Rees D.A. S., Wilson M. Flow in a rotating cavity with a peripheral inlet and outlet of cooling air // ASME Paper. 1996. Paper N 96-GT-309.
  8. Mirzaee I., Gan X., Wilson M., Owen J.M. Heat transfer in a rotating cavity with a peripheral inflow and outflow of cooling air // J. of Turbomachinery. 1998. 120, N 4. 818-823.
  9. Jaafar A.A., Motallebi F., Wilson M., Owen J.M. Flow and heat transfer in a rotating cavity with a stationary stepped casing // ASME Paper. 2000. Paper N 2000-GT-281.
  10. Tham K.M., Long C.A., Turner A.B., Dixon J.A. Computation of the flow in a HP compressor drive cone cavity // Proc. of the Int. Gas Turbine Congress, 2-7 November 2003, Tokyo, Japan. 2003. Paper N TS-024.
  11. Incropera F.P., de Witt D.P. Fundamentals of heat and mass transfer. New York: John Wiley &; Sons, 1996.
  12. Kilfoil A.S. R., Chew J.W. Modelling of buoyancy-affected flow in co-rotating disc cavities // ASME Paper. 2009. Paper N GT2009-59214.
  13. Long C.A., Tucker P.G. Numerical computation of laminar flow in a heated rotating cavity with an axial throughflow of air // Int. J. of Numerical Methods for Heat and Fluid Flow. 1994. 4, N 4. 347-365.
  14. Sun Z., Kilfoil A., Chew J.W., Hills N.J. Numerical simulation of natural convection in stationary and rotating cavities // ASME Paper. 2004. Paper N GT2004-53528.
  15. Spalart P.R., Allmaras S.R. A one equation turbulence model for aerodynamic flows // AIAA Paper. 1992. Paper N 92-0439.
  16. Deck S., Duveau P., d’Espiney P., Guillen P. Development and application of Spalart-Allmaras one-equation turbulence model to three-dimensional supersonic complex configurations // Aerospace Science and Technology. 2002. 6, N 3. 171-183.
  17. Dacles-Mariani J., Zilliac G.G., Chow J.S., Bradshaw P. Numerical/experimental study of a wingtip vortex in the near field // AIAA Journal. 1995. 33, N 9. 1561-1568.
  18. Волков К.Н. Дискретизация уравнений Навье-Стокса на неструктурированной сетке при помощи метода контрольного объема и разностных схем повышенной разрешающей способности // Журн. вычисл. матем. и матем. физики. 2008. 48, N 7. 1250-1273.
  19. Волков К.Н. Применение метода контрольного объема для решения задач механики жидкости и газа на неструктурированных сетках // Вычислительные методы и программирование. 2005. 6, N 1. 43-60.
  20. Волков К.Н. Блочное предобусловливание уравнений Эйлера и Навье-Стокса при моделировании низкоскоростных течений на неструктурированных сетках // Журн. вычисл. матем. и матем. физики. 2009. 49, N 10. 1868-1884.