A numerical method for analyzing the Knudsen micropump characteristics

Authors

  • Yu.Yu. Kloss
  • D.V. Martynov
  • F.G. Cheremissine

Keywords:

Boltzmann equation
projection method
tetrahedral meshes
Knudsen pump

Abstract

A numerical method for the Boltzmann kinetic equation is proposed. Elastic collisions are computed by the projection method. The transfer operator is approximated using tetrahedral meshes. The main requirements for coordinate meshes are formulated; it is shown that the usage of variable edge length and tetrahedron quality optimizers decreases the amount of time needed to solve the problem. As examples, several models of straight cylindrical and curved pipes as well as snake Knudsen pumps are discussed.


Published

2010-12-27

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

Yu.Yu. Kloss

D.V. Martynov

F.G. Cheremissine

Dorodnicyn Computing Centre of RAS
• Leading Researcher


References

  1. Blomberg M., Rusanen O., Keranen K., Lehto A. A silicon microsystem-miniaturised infrared spectrometer // Proc. of IEEE Int. Conf. on Solid-State Sensors and Actuators. 1997. 2. 1257-1258.
  2. Terry S.C., Jerman J.H., Angell J.B. A gas chromatographic air analyzer fabricated on a silicon wafer // IEEE Trans. on Electron Devices. 1979. 26, N 12. 1880-1886.
  3. Vargo S.E., Muntz E.P., Shiflett G.R., Tang W.C. The Knudsen compressor as a micro and macro scale vacuum pump without moving parts or fluids // J. Vac. Sci. Technol. 1999. 17. 2308-2313.
  4. Аристов В.В., Черемисин Ф.Г. Расщепление неоднородного кинетического оператора уравнения Больцмана // Докл. АН СССР. 1976. 231, N 1. 49-52.
  5. Черемисин Ф.Г. Консервативный метод вычисления интеграла столкновений Больцмана // Доклады РАН. 1997. 357, N 1. 53-56.
  6. Коробов Н.М. Тригонометрические суммы и их приложения. Москва: Наука, 1989.
  7. Knudsen M. Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung // Ann. Phys. 1910. 31. 205-229.
  8. Knudsen M. Thermischer Molekulardruck der Gase in Röhren // Ann. Phys. 1910. 338, N 16. 1435-1448.
  9. Клосс Ю.Ю., Мартынов Д.В., Черемисин Ф.Г. Разработка методов компьютерного моделирования и анализа микронасоса Кнудсена // Информационные технологии. N 10. 2010. 30-35.
  10. Аникин Ю.А., Клосс Ю.Ю., Мартынов Д.В., Черемисин Ф.Г. Компьютерное моделирование и анализ эксперимента Кнудсена 1910 года // Нано- и микросистемная техника. 2010. N 8. 6-14.
  11. Aoki K., Degond P., Mieussens L. Numerical simulations of rarefied gases in curved channels: Thermal creep, circulating flow, and pumping effect // J. Comput. Phys. 2009. 6, N 5. 919-954.
  12. Aoki K., Degond P., Mieussens L., Nishioka M., Takata S. Numerical simulation of a Knudsen pump using the effect of curvature of the channel // Rarefied Gas Dynamics. M.S. Ivanov and A.K. Rebrov, Eds. Novosibirsk, 2007. 1079-1084.
  13. Hirschfelder J.O., Curtiss Ch. F., Bird R.B. Molecular theory of gases and liquids. New York: Wiley, 1954.
  14. Geuzaine C., Remacle J.-F. GMSH: a finite element mesh generator with built-in pre- and post-processing facilities. 1996 (available from http://www.geuz.org/gmsh).
  15. Hendrickson B., Leland R. The Chaco user’s guide. Version 2.0. Sandia Tech Report SAND94-2692. 1994 (available from verb"http://www.sandia.gov/ bahendr/chaco.html").
  16. Moulitsas I., Karypis G. Architecture aware partitioning algorithms // Proc. of the 8th Int. Conf. on Algorithms and Architectures for Parallel Processing (ICA3PP). 2008 (available from verb"http://www.cs.umn.edu/ metis").