Some features of solving the problems of mapping for allocation of chemical elements on stellar surfaces as ill-posed problems with the use of multiprocessor systems

Authors

Keywords:

некорректная задача, задача картирования, функционал Тихонова, многопроцессорные системы, доплеровское смещение

Abstract

The problem of mapping for allocation of chemical elements on stellar surfaces is considered as an ill-posed one. The minimization of Tikhonov’s functional with the choice of a regularization parameter according to the finite-dimensional generalized discrepancy principle is used to construct a regularizing algorithm for solving the problem under consideration. The method based on projections of conjugate gradients onto a set of non-negative vectors is chosen as a method of minimization. An approach to numerical solution of the minimization problem is considered for the above mapping problem. A multiprocessor computer is used to solve several model problems numerically. Some schemes of parallelization are offered and special features of their realization are discussed.

Author Biographies

A.G. Yagola

V.N. Titarenko

M.P. Vasiliev

E.V. Shimanovskaya

References

  1. Гончарский А.В., Черепащук А.М., Ягола А.Г. Некорректные задачи астрофизики. М.: Наука, 1985.
  2. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, 1995.
  3. Гончарский А.В., Степанов В.В., Хохлова В.Л., Ягола А.Г. Восстановление локальных профилей линий по наблюдаемым в спектре Ap-звезд // Письма в Астрон. журн. 1977. 3, № 6. 278-282.
  4. Вычислительный кластер НИВЦ МГУ (http://parallel.ru/cluster).
  5. MPI: A Message-Passing Interface standard // The Message Passing Interface Forum, Version 1.1, June 12, 1995 (http://www.mpi-forum.org).

Published

2002-01-24

How to Cite

Ягола А.Г., Титаренко В.Н., Васильев М.П., Шимановская Е.В. Some Features of Solving the Problems of Mapping for Allocation of Chemical Elements on Stellar Surfaces As Ill-Posed Problems With the Use of Multiprocessor Systems // Numerical methods and programming. 2002. 3. 1-13

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>