On the peculiarities of solving large systems of linear algebraic equations on high performance computing systems of different architecture
Keywords:
iterative methods
systems of linear algebraic equations
scalability
Abstract
The results of testing a set of the Krylov subspace iterative methods (CGS, BiCGStab) with algebraic multigrid preconditioner for solving large sparse systems of linear algebraic equations are discussed. The scalability characteristics for the MPI and hybrid versions of the code on three HPC-systems are given. The peculiarities of using these methods on computer systems of different processor architecture (Intel Harpertown, Intel Nehalem, and AMD Magny-Cours) are analyzed.
Section
Section 1. Numerical methods and applications
References
- Saad Y. Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.
- Trottenberg U., Oosterlee C.W., Schuller A. Multigrid. New York: Academic Press, 2001.
- Krasnopolsky B. The reordered BiCGStab method for distributed memory computer systems // Procedia Computer Science. 2010. 1, N 1. 213-218.
- Краснопольский Б.И. Исследование эффективности переупорядоченного метода BiCGStab на многопроцессорных вычислительных системах СКИФ МГУ «Чебышёв» и «Ломоносов» // Вестник ЮУрГУ, серия «Математическое моделирование и программирование». 2011. Вып. 7, N 4(221). 56-65.
- Pellegrini F., Chevalier C. SfootnotesizeCOTCH