A continuum solvent model: the DISOLV program - algorithms, implementation, and validation

Authors

  • O.Yu. Kupervasser
  • S.N. Zhabin
  • Ya.B. Martynov
  • K.M. Fedulov
  • I.V. Oferkin
  • A.V. Sulimov
  • V.B. Sulimov

Keywords:

polarized continuum model
conductor-like screening model
surface generalized Born model
solvation
implicit solvation model
computer-aided drug design
solvent excluded surface
solvent accessible surface
triangulation
non-polar interactions
polar interactions
force field

Abstract

Several implicit (continuum) solvent models are considered: the Polarized Continuum Model (PCM), the Surface Generalized Born model (SGB), and the COnductor-like Screening ��del (COSMO) as well as their implementation in the form of the DISOLV program. The methods for solving the corresponding equations and for computing the analytic gradients are described. The analytic gradients are used for the fast local energy optimization of molecules in a solvent. An algorithm for the original smooth triangulated molecular surface construction is shortly discussed. The procedure for matching the model parameters and the results of the program application to proteins and ligands with the employment of the MMFF94 force field are described. The validation results show the capability of the program to reach a good accuracy (about several tenth of kcal/mol) in the case of the solvation energy calculation for reasonable time periods at arbitrary shifts of the triangulated grid in use for such large molecules as proteins. A good agreement between the calculated and experimentally measured solvation energies in water is obtained with a root-mean-square deviation about 0.8 kcal/mol for several hundreds of molecules.


Published

2011-05-16

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

O.Yu. Kupervasser

S.N. Zhabin

Ya.B. Martynov

K.M. Fedulov

I.V. Oferkin

A.V. Sulimov

V.B. Sulimov

Dimonta, LLC
• Head of Laboratory


References

  1. Садовничий В.А., Сулимов В.Б. Суперкомпьютерные технологии в медицине // Суперкомпьютерные технологии в науке, образовании и промышленности / Под ред. В.А. Садовничего, Г.И. Савина, Вл.В. Воеводина. М: Изд-во Моск. ун-та, 2009. 16-23.
  2. Романов А.Н., Кондакова О.А., Григорьев Ф.В., Сулимов A.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б. Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. 9, N 2. 64-84.
  3. Tomasi J., Persico M. Molecular interactions in solution: an overview of method based on continuous distributions of the solvent // Chem. Rev. 1994. 94. 2027-2094.
  4. Cramer C., Truhlar D. Implicit solvation models: equilibria, structure, spectra, and dynamics // Chem. Rev. 1999. 99. 2161-2200.
  5. Onufriev A. Continuum electrostatics solvent modeling with the generalized Born model // Modeling Solvent Environments. Applications to Simulations of Biomolecules.
  6. Купервассер О.Ю., Жабин С.Н., Сулимов В.Б. DISOLV. Свидетельство о государственной регистрации программ для ЭВМ N 2010612994. Зарегистрировано в реестре программ для ЭВМ Федеральной службы по интеллектуальной собственности, патентам и товарным знакам 6 мая 2010 года.
  7. Купервассер О.Ю., Жабин С.Н., Сулимов В.Б. Континуальные модели растворителя. Подсчет свободной энергии растворения // Сб. материалов II Всероссийской конференции «Многомасштабное моделирование процессов и структур в нанотехнологиях». 27-29 мая 2009. М.: МИФИ, 2009. 230.
  8. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., et al. Gaussian 03 (Revision B. 03) // Gaussian Inc. Pittsburgh, 2003.
  9. General Atomic and Molecular Electronic Structure System, GAMESS User’s Guide // Department of Chemistry Iowa State University. Ames, 2010 (http://www.msg.chem.iastate.edu/gamess/documentation.html).
  10. Werner H.J., Knowles P.J. MolPro Users Manual Version 2010.1 Patchlevel 14 // University College Cardiff Consultants Limited (http://www.molpro.net/info/current/doc/manual/node1.html).
  11. Stewart J.P. MOPAC Manual (Seventh Edition) // January 1993 (nova.colombo58.unimi.it/manual/pdf/Mopac7.pdf).
  12. Im W., Beglov D., Roux B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation // Comp. Phys. Commun. 1998. 111. 59-75.
  13. Rocchia W., Sridharan S., Nicholls A., Alexov E., Chiabrera A., Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects // J. Comp. Chem. 2002. 23, N 1. 128-137.
  14. Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: application to microtubules and the ribosome // Proc. Natl. Acad. Sci. USA. 2001. 98. 10037-10041.
  15. Halgren T.A. Merck molecular force field // J. Comput. Chem. 1996. Т. 5&;6. 490-519; 520-552; 553-586; 587-615; 616-641.
  16. Connolly M.L. Solvent-accessible surfaces of proteins and nucleic acids // Science. 1983. 221, N 4612. 709-713.
  17. Scharlin P., Battino R., Silla E., Tunon I., Pascual-Ahuir J.L. Solubility of gases in water: correlation between solubility and the number of water molecules in the first solvation shell // Pure &; App. Chem. 1998. 70, N 10. 1895-1904.
  18. Жабин С.Н., Сулимов В.Б. TAGSS. Свидетельство N 2006613753 о государственной регистрации программ для ЭВМ. Зарегистрировано в реестре программ для ЭВМ Федеральной службы по интеллектуальной собственности, патентам и товарным знакам 27 октября 2006.
  19. Жабин С.Н., Сулимов В.Б. Программа построения доступной растворителю поверхности для произвольных органических молекул и интерактивный просмотр положений лигандов в активных центрах белков // Сб. материалов XIII Российского национального конгресса «Человек и лекарство». 3-7 апреля 2006. М., 2006. 15.
  20. Жабин С.Н., Сулимов В.Б. Программа для визуализации и редактирования молекул «MOLRED» // Сб. материалов II Всероссийской конференции «Многомасштабное моделирование процессов и структур в нанотехнологиях». 27-29 мая 2009. М.: МИФИ, 2009. 166.
  21. Pomelli S., Tomasi J. A new formulation of the PCM solvation method: PCM-QINTn Christian // Theor. Chem. Acc. 1997. 96. 39-43.
  22. Totrov M., Abagyan R. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide // Biopolymers (Peptide Science). 2001. 60. 124-133.
  23. Klamt A., Schuurmann G. COSMO: a new approah to dielectric screening in solvent with explicit expressions for the screening energy and its gradient // J. Chem. Soc. Perkin Trans. 1993. 2. 799-805.
  24. Romanov A.N., Jabin S.N., Martynov Y.B., Sulimov A.V., Grigoriev F.V., et al. Surface generalized Born method: a simple, fast and precise implicit solvent model beyond the Coulomb approximation // J. Phys. Chem. Sect A. 2004. 108. 9323-9327.
  25. Bordner A.J., Cavasotto C.N., Abagyan R.A. Accurate transferable model for water, n-Octanol, and n-Hexadecane solvation free energies // J. Phys. Chem. B. 2002. 106. 11009-11015.
  26. Vorobjev Y.N., Hermans J. SIMS: computation of a smooth invariant molecular surface // Biophys. J. Volume. 1997. 73. 722-732.
  27. Васильев Ф.П. Методы оптимизации. М.: Факториал Пресс, 2002.
  28. Onufriev A., Case D.A., Bashford D. Effective Born radii in the generalized Born approximation: the importance of being perfect // J. Comput. Chem. 2002. 23. 1297-1304.
  29. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank // Nucleic Acids Research. 2000. 28. 235-242 (http://www.rcsb.org/pdb/home/home.do).
  30. Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation // J. Mol. Biol. 1999. 285. 1735-1747.
  31. Жабин С.Н., Сулимов В.Б. Реализация интерактивности в молекулярном редакторе MOLRED // Научная визуализация. 2010. 2, N 1. 59-81.
  32. Перечень 20 комплексов, использовавшихся при валидации. PDB entries: 1a28, 1Abe, 1ANE, 1ART, 1bcj, 1bky, 1d4i, 1d4j, 1y20, 1yc1, 1ydk, 1z95, 1zhy, 2q89, 2r3d, 2r5p, 2v8q, 3b50, 3bgq, 3bgz.
  33. Chudinov G.E., Napolov D.V., Basilevsky M.V. Quantum-chemical calculations of the hydration energies of organic cations and anions in the framework of a continuum solvent approximation // Chem. Phys. 1992. 160. 41-54.
  34. Jorgensen W.L., Ulmschneider J.P., Tirado-Rivers J. Free energies of hydration from a generalized Born model and an all-atom force field // J. Phys. Chem. B. 2004. 108. 16264-16270.