Calculation of the density of states and the thermal properties of polymer chains and stars on a lattice by the Monte Carlo method with the use of the Wang-Landau algorithm



polymer star, Wang-Landau algorithm


The Monte Carlo method with the use of the Wang-Landau algorithm is applied to study the lattice models of free polymer chains and 6-arm polymer stars. The ratio of self-avoiding walks among semi-phantom walks for the chains of length N ≤ 300 and the stars with the total number N ≤ 720 of segments is determined. The distribution over the number of monomers’ contacts for chains and stars with the number N = 30,72,120 of segments is obtained. Based on this distribution, the temperature dependences are found for the internal energy, the heat capacity, and the entropy.

Author Biographies

I.A. Silantyeva

P.N. Vorontsov-Velyaminov


  1. Иванов В.А., Рабинович А.Л., Хохлов А.Р. Методы компьютерного моделирования для исследования полимеров и биополимеров. М.: Либроком, 2009.
  2. Larin S., Darinskii A., Zhulina E., Borisov O. Interpolyelectrolyte complexes between starlike and linear macromolecules: a structural model for nonviral gene vectors // Langmuir. 2009. 25, N 4. 1915-1918.
  3. Larin S., Lyulin S., Lylin A., Darinskii A. Computer simulations of interpolyelectrolyte complexes formed by star-like polymers and linear polyelectrolytes // Macromol. Symp. 2009. 278. 40-47.
  4. Vorontsov-Velyaminov P.N., Volkov N.A., Yurchenko A.A. Entropic sampling of simple polymer models within Wang-Landau algorithm // J. Phys. A. 2004. 37. 1573-1588.
  5. Volkov N.A., Yurchenko A.A., Lyubartsev A.P., Vorontsov-Velyaminov P.N. Entropic sampling of free and ring polymer chains // Macromol. Theory and Simul. 2005. 14. 491-504.
  6. Волков Н.А., Любарцев А.П., Воронцов-Вельяминов П.Н. Энтропическое моделирование гибкого полиэлектролита при помощи алгоритма Ванга-Ландау // Вычислительные методы и программирование. 2006. 7, N 2. 152-161.
  7. Бирштейн Т.М., Меркурьева А.А., Лирмэйкерс Ф.А. М., Рудь О.В. Конформации полимерных и полиэлектролитных звезд // Высокомолекулярные соединения. А. 2008. 50, N 8. 1-18.
  8. Aryal S., Prabaharana M., Pilla S., Gonga S. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery // Int. J. of Biological Macromolecules. 2009. 44. 346-352.
  9. Georgiou T.K., Vamvakaki M., Phylactou L.A., Patrickios C.S. Synthesis, characterization and evaluation as transfection reagents of double-hydrophilic star copolymers: effect of star architecture // Biomacromolecules. 2005. 6, N 6. 2290-2997.
  10. Georgiou T.K., Vamvakaki M., Patrickios C.S. et al. Nanoscopic cationic metacrilate star homopolymers: synthesis by group transfer polymerization, characterization and evaluation as transfection reagents // Biomacromolecules. 2004. 5, N 6. 2221-2229.
  11. Berg B.A., Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions // Phys. Rev. Lett. 1992. 68. 9-12.
  12. Lee J. New Monte Carlo algorithm: entropic sampling // Phys. Rev. Lett. 1993. 71. 211-214.
  13. Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states // Phys. Rev. Lett. 2001. 86. 2050-2053. wreflabelb13
  14. Parsons D.F., Williams D.R. M. An off-lattice Wang-Landau study of the coil-globule and melting transitions of a flexible homopolymer // J. Chem. Phys. 2006. 124. 221103. wreflabelb14
  15. Parsons D.F., Williams D.R. M. Globule transitions of a single homopolymer: a Wang-Landau Monte Carlo study // Phys. Rev. E. 2006. 74. 041804.
  16. Seaton D.T., Wust T., Landau D.P. A Wang-Landau study of the phase transitions in a flexible homopolymer // Computer Physics Communications. 2009. 180. 587-589.
  17. Seaton D.T., Wust T., Landau D.P. Collapse transitions in a flexible homopolymer chain: application of the Wang-Landau algorithm // Phys. Rev. E. 2010. 81. 011802.
  18. Rampf F., Binder K., Paul W. The phase diagram of a single polymer chain: new insights from a new simulation method // J. of Polymer Science. B. 2006. 44. 2542-2555.
  19. Gordon S. The self-avoiding walk: a brief survey // Proc. of the 33rd SPA Conference. Surveys in Stochastic Processes. Berlin: European Math. Society, 2010. 181-199.
  20. Melas V.B. Optimal simulation design by branching technique // Model-Oriented Data Analysis / W.G. Mueller, H.P. Wynn, A.A. Zhygliavsky (Eds.). 1993. Heidelberg: Physica-Verlag, 113-127.
  21. Clisby N. Efficient implementation of the pivot algorithm for self-avoiding walks // J. Stat. Phys. 2010. 140. 349-392.
  22. Rosenbluth M.N., Rosenbluth A.W. Monte Carlo calculation of the average extension of molecular chains // J. of Chemical Physics. 1955. 23, N 2. 356-359.
  23. Douglas J., Ishinabe T. Self-avoiding-walk contacts and random-walk self-intersections in variable dimensionality // Phys. Rev. E. 1995. 51, N 3. 1791-1817.
  24. Douglas J., Guttman C.M., Mah A., Ishinabe T. Spectrum of self-avoiding walk exponents // Phys. Rev. E. 1997. 55, N 1. 738-749.
  25. Romiszowski P., Sikorski A. Temperature dependence of properties of star-branched polymers: a computer simulation study // J. Chem. Phys. 1998. 109, N 7. 2912-2920.



How to Cite

Силантьева И., Воронцов-Вельяминов П. Calculation of the Density of States and the Thermal Properties of Polymer Chains and Stars on a Lattice by the Monte Carlo Method With the Use of the Wang-Landau Algorithm // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2011. 12. 397-408



Section 1. Numerical methods and applications