Quantum-chemical modeling of excited states of Bismuth monocations


  • A.N. Romanov
  • O.A. Kondakova
  • V.B. Sulimov
  • A.V. Sulimov
  • I.V. Oferkin
  • A.Yu. Golovacheva


quantum chemistry
Bismuth monocation
subvalent bismuth


Inorganic dyes are proposed as perspective materials for the dye-sensitized solar cell design. The active media doped with Bismuth represent one possibility of such materials. The open shell atomic structure of Bismuth compounds can cause the broad optical absorption bands in visible and effective solar energy conversion in the whole spectral range. In order to study this possibility, the quantum-chemical simulation of Bismuth monocations is performed for the free ion and for an ion with crystal surrounding. The effect of crystal lattice distortion on the spectral characteristics of monocations is discussed. It is shown that the position of the Bismuth monocation excited states corresponds to the absorption lines in Vis- and NIR-spectral ranges. The breaking of monocation surrounding symmetry by the crystal lattice distortion leads to an additional broadening of Bismuth monocation optical absorption bands.





Section 1. Numerical methods and applications

Author Biographies

A.N. Romanov

O.A. Kondakova

V.B. Sulimov

A.V. Sulimov

Dimonta, LLC
• System Programmer

I.V. Oferkin

Dimonta, LLC
• Programmer

A.Yu. Golovacheva

Dimonta, LLC
• Junior Researcher


  1. Krebs F.C. (Ed.) Polymer photovoltaics: a practical approach. Washington: SPIE Press, 2008.
  2. Zhang H., Balasubramanian K. Electronic structure of the group V tetramers (P_4-Bi_4) // J. Chem. Phys. 1992. 97, N 5. 3437-3444.
  3. Day G., Glaser R., Shimomura N., Takamuku A., Ichikawa K. Electronic excitations in homopolyatomic bismuth cations: spectroscopic measurements in molten salts and ab initio CI-Singles study // Chem. Eur. J. 2000. 6, N 6. 1078-1086.
  4. Sokolov V.O., Plotnichenko V.G., Dianov E.M. Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi^+, Bi_5^3+ and Bi_4. 8 Jun 2011 (arXiv:1106.1519v1 [cond-mat.mtrl-sci]).
  5. Davis H.L., Bjerrum N.J., Smith G.P. Ligand field theory of p^2,4 configurations and its application to the spectrum of Bi^+ in molten salt media // Inorg. Chem. 1967. 6, N 6. 1172-1178.
  6. Werner H.-J., Knowles P.J., Lindh R., Manby F.R., Schutz M., Celani P., Korona T., Rauhut G., Amos R.D., Bernhardsson A., Berning A., Cooper D.L., Deegan M.J. O., Dobbyn A.J., Eckert F., Hampel C., Hetzer G., Lloyd A.W., McNicholas S.J., Meyer W., Mura M.E., Nicklass A., Palmieri P., Pitzer R., Schumann U., Stoll H., Stone A.J., Tarroni R., Thorsteinsson T. MOLPRO, version 2006.1. A package of ab initio programs (http://www.molpro.net).
  7. http://www.theochem.uni-stuttgart.de/pseudopotentials/
  8. Knowles P.J., Werner H.-J. Internally contracted multiconfiguration-reference configuration interaction calculations for excited states // Theor. Chem. Acta. 1992. 84. 95-103.
  9. Peterson K. Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements // J. Chem. Phys. 2003. 119. 11099-11112.
  10. Berning A., Schweizer M., Werner H.-J., Knowles P.J., Palmieri P. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions // Mol. Phys. 2000. 98. 1823-1833.
  11. Dyall K.G. (Ed.) Introduction to relativistic quantum chemistry. Oxford: Oxford University Press, 2007.
  12. Keller O.L. Jr., Nestor C.W. Jr., Fricke B. Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth // J. Phys. Chem. 1974. 78. 1945-1949.
  13. Dolk L., Litzen U., Wahlgren G.M. The laboratory analysis of BiII and its application to the Bi-rich HgMn star HR 7775 // Astronomy &; Astrophysics. 2002. 388. 692-703.
  14. Romanov A., Fattakhova Z., Zhigunov D., Buchnev L., Korchak V., Sulimov V. IR luminescence from subvalent bismuth in phosphate glasses and glass-ceramic matrices: a new insight into the nature of luminescent Bi species // Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference. Munich, Germany, 2011.