Implementation of parallel computing for docking programs SOLGRID and SOL
Authors
-
I.F. Oferkin
-
A.V. Sulimov
-
O.A. Kondakova
-
V.B. Sulimov
Keywords:
docking
high-performance computing
message passing interface
Abstract
Several implementation schemes and their efficiencies of one ligand parallel docking are considered. Programs SOLGRID and SOL were chosen as initial serial programs to implement parallel computations. Tests were carried out on the cluster supercomputer «CHEBYSHEV» of SKIF MSU. MPI was used to implement parallel computations. This work was performed as a part of the post-genomic research and technology research in M.V. Lomonosov MSU and as a part of the state contract 02.740.11.0388 on «Supercomputing Technologies for Solving Information Handling, Storage, Transfer and Protection Problems» and also was partly supported by grants RFBR (project codes 09-01-12097_ofi-m, 10-07-00595-a).
Section
Section 2. Programming
References
- Садовничий В.А., Сулимов В.Б. Суперкомпьютерные технологии в медицине // Суперкомпьютерные технологии в науке, образовании и промышленности / Под ред. В.А. Садовничего, Г.И. Савина, Вл.В. Воеводина. М: Изд-во Моск. ун-та, 2009. 16-23.
- Zoete V., Grosdidier A., Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design // J. Cell. Mol. Med. 2009. 13. 238-248.
- Klebe G. Virtual ligand screening: strategies, perspectives and limitations // Drug Disc. Today. 2006. 11. 580-594.
- Wlodawer A., Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design // Annu. Rev. Biophys. Biomol. Struct. 1998. 27. 249-284.
- Tarle I., Borhani D.W., Wilson D.K., Quiocho F.A., Petrash J.M. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110 // J. Biol. Chem. 1993. 268, N 34. 25687-25693.
- Lin J.H., Perryman A.L., Schames J.R., McCammon J.A. Computational drug design accommodating receptor flexibility: the relaxed complex scheme // J. Am. Chem. Soc. 2002. 124, N 20. 5632-5633.
- Erickson J.A., Jalaie M., Robertson D.H., Lewis R.A., Vieth M. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy // J. Med. Chem. 2004. 47, N 1. 45-55.
- Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E. A geometric approach to macromolecule-ligand interactions // J. Mol. Biol. 1982. 161. 269-288.
- Chen R., Weng Z. A novel shape complementarity scoring function for protein-protein docking // Proteins. 2003. 51, N 3. 397-408.
- Ritchie D.W., Kozakov D., Vajda S. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions // Bioinformatics. 2008. 24, N 17. 1865-1873.
- Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function // J. Comput. Chem. 1998. 19. 1639-1662.
- Huey R., Morris G.M., Olson A.J., Goodsell D.S. A semiempirical free energy force field with charge-based desolvation // J. Comput. Chem. 2007. 28. 1145-1152.
- Ewing T.J., Makino S., Skillman A.G., Kuntz I.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases // J. Comput. Aided Mol. Des. 2001. 15. 411-428.
- Abagyan R., Totrov M., Kuznetsov D. ICM - a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation // J. Comput. Chem. 1994. 15. 488-506.
- Jones G., Willett P., Glen R.C., Leach A.R., Taylor R. Development and validation of a genetic algorithm for flexible docking // J. Mol. Biol. 1997. 267. 727-748.
- Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. Improved protein-ligand docking using GOLD // Proteins. 2003. 52. 609-623.
- Романов А.Н., Кондакова О.А., Григорьев Ф.В., Сулимов А.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б. Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. 9, № 2. 64-84.
- Cavasotto C.N., Abagyan R.A. Protein flexibility in ligand docking and virtual screening to protein kinases // J. Mol. Biol. 2004. 337. 209-225.
- Rarey M., Kramer B., Lengauer T., Klebe G. A fast flexible docking method using an incremental construction algorithm // J. Mol. Biol. 1996. 261. 470-489.
- Claussen H., Buning C., Rarey M., Lengauer T. FlexE: efficient molecular docking considering protein structure variations // J. Mol. Biol. 2001. 308. 377-395.
- Sousa S.F., Fernandes P.A., Ramos M.J. Protein-ligand docking: current status and future challenges // Proteins. 2006. 65. 15-26.
- Halperin I., Ma B., Wolfson H., Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions // Proteins. 2002. 47, N 4. 409-443.
- Aqeel A., Sina K., Holger G. Protein flexibility and mobility in structure-based drug design // Frontiers in Drug Design &; Discovery. 2007. 3. 455-476.
- Sheng-You Huang, Xiaoqin Zou. Advances and challenges in protein-ligand docking // Int. J. Mol. Sci. 2010. 11. 3016-3034.
- Miller M.D., Kearsley S.K., Underwood D.J., Sheridan R.P. FLOG: a system to select «quasi-flexible» ligands complementary to a receptor of known three-dimensional structure // J. Comput. Aided Mol. Des. 1994. 8, N 2. 153-174.
- Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., Shaw D.E., Francis P., Shenkin P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy // J. Med. Chem. 2004. 47. 1739-1749.
- Halgren T.A., Murphy R.B., Friesner R.A., Beard H.S., Frye L.L., Pollard W.T., Banks J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening // J. Med. Chem. 2004. 47. 1750-1759.
- Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes // J. Med. Chem. 2006. 49. 6177-6196.
- Goldberg D.E. Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley, 1989.
- Goldberg D.E. Real-coded genetic algorithm, virtual alphabets, and blocking // Complex systems. 1991. 5. 139-167.
- Konfrst Z. Parallel genetic algorithms: advances, computing trends, applications and Perspectives // Proc. 18th Int. Parallel and Distributed Processing Symposium (IPDPS’04). Workshop 6. 26-30 April 2004. New Mexico. USA. 7, 162. Santa Fe, 2004.
- Thomsen R., Christensen M.H. MolDock: a new technique for high-accuracy molecular docking // J. Med. Chem. 2006. 49. 3315-3321.
- McMartin C., Bohacek R.S. QXP: powerful, rapid computer algorithms for structurebased drug design // J. Comput. Aided Mol. Des. 1997. 11. 333-344.
- Namasivayam V., Gunther R. pso@autodock: a fast flexible molecular docking program based on swarm intelligence // Chem. Biol. Drug Des. 2007. 70, N 6. 475-484.
- Chen H.M., Liu B.F., Huang H.L., Hwang S.F., Ho S.Y. SODOCK: swarm optimization for highly flexible protein-ligand docking // J. Comput. Chem. 2007. 28, N 2. 612-623.
- Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing // Science. 1983. 220, N 4598. 671-680.
- Dias R., de Azevedo W.F. Molecular docking algorithms // Curr. Drug Targets. 2008. 9, N 12. 1040-1047.
- Bursulaya B.D., Totrov M., Abagyan R., Brooks C.L. Comparative study of several algorithms for flexible ligand docking // J. Comput. Aided Mol. Des. 2003. 17, N 11. 755-763.
- Wang R., Wang S. How does consensus scoring work for virtual library screening? An idealized computer experiment // J. Chem. Inf. Comput. Sci. 2001. 41, N 5. 1422-1426.
- Teramoto R., Fukunishi H. Supervised consensus scoring for docking and virtual screening // J. Chem. Inf. Model. 2007. 47, N 2. 526-534.
- Congreve M., Chessari G., Tisi D., Woodhead A.J. Recent developments in fragment-based drug discovery // J. Med. Chem. 2008. 51, N 13. 3661-3680.
- Pegg S.C., Haresco J.J., Kuntz I.D. A genetic algorithm for structure-based de novo design // J. Comput. Aided Mol. Des. 2001. 15, N 10. 911-933.
- Moustakas D.T., Lang P.T., Pegg S., Pettersen E., Kuntz I.D., Brooijmans N., Rizzo R.C. Development and validation of a modular, extensible docking program: DOCK 5 // J. Comput. Aided Mol. Des. 2006. 20, N 10-11. 601-619.
- Levesque M.J., Ichikawa K., Date S., Haga J.H. Design of a grid service-based platform for in silico protein-ligand screenings // Comput. Methods Programs Biomed. 2009. 93, N 1. 73-82.
- Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility // J. Comput. Chem. 2009. 30. 2785-2791.
- FightAIDS@Home (http://fightaidsathome.scripps.edu).
- Discover Dengue Drugs-Together (http://www.worldcommunitygrid.org/research/dddt/overview.do).
- Zhang Sh., Kumar K., Jiang X., Wallqvist A., Reifman J. DOVIS: an implementation for high-throughput virtual screening using AutoDock // BMC Bionformatics 8. 2008. 126-129.
- Zhang Sh., Kumar K., Hu X., Wallqvist A., Reifman J. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0 // Chem. Central J. 2008. 2. 18-24.
- Vistoli G., Pedretti A., Mazzolari A., Testa B. Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0 // J. Comput. Aided Mol. Des. 2010. 24, N 9. 771-787.
- Morris G.M., Goodsell D.S., Huey R., Olson A.J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4 // J. Comput. Aided Mol. Des. 1996. 10, N 4. 293-304.
- Prakhov N.D., Chernorudskiy A.L., Gainullin M.R. VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters // Bioinformatics. 2010. 26. 1374-1375.
- Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading // J. Comput. Chem. 2010. 31, N 2. 455-461.
- Chang M.W., Ayeni C., Breuer S., Torbett B.E. Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina // PLoS One. 2010. 5, N 8. e11955.
- Khodade P., Prabhu R., Chandra N., Rahab S., Govindarajanb R. Parallel implementation of AutoDock // J. Appl. Cryst. 2007. 40. 598-599.
- Micevski D. Optimizing Autodock with CUDA. Victorian Partnership For Advanced Computing Ltd, 2009.
- http://gpuautodock.sourceforge.net/
- Halgren T.A. Merck Molecular Force Field. I. Basis, form, scope, parametrization and performance of MMFF94 // J. Comput. Chem. 1996. Т. 5&;6. 490-519; 520-552; 553-586; 587-615; 616-641.
- Ghosh A., Rapp C.S., Friesner R.A. Generalized Born Model Based on a Surface Integral Formulation // J. Phys. Chem. B. 1998. 102. 10983-10990.
- Romanov A.N., Jabin S.N., Martynov Y.B., Sulimov A.V., Grigoriev F.V., Sulimov V.B. Surface Generalized Born method: a simple, fast and precise implicit solvent model beyond the Coulomb approximation // J. Phys. Chem. A. 2004. 108. 9323-9327.