Error estimation in linear inverse problems with prior information

Authors

  • Yu.M. Korolev
  • A.G. Yagola

Keywords:

linear ill-posed problems
error estimation
partially ordered sets

Abstract

An inverse problem for an operator equation Az = u is considered. The exact operator A and the exact right-hand side u are unknown. Only their upper and lower estimates are available. A technique of finding upper and lower estimates for the exact solution is proposed under the assumption that this solution is positive and bounded. A posterior error estimate is obtained for approximate solutions. The approximate solutions with an optimal posterior error estimate are discussed. Various prior information on the exact solution is used (for example, its monotonicity and convexity). This work was supported by the Russian Foundation for Basic Research (projects 11-01-00040a and 09-01-00586a) and by Visby Program, Swedish Institute, Stockholm.


Published

2011-12-15

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

Yu.M. Korolev

A.G. Yagola


References

  1. Dorofeev K., Yagola A. The method of extending compacts and a posteriori error estimates for nonlinear ill-posed problems // J. of Inverse and Ill-Posed Problems. 2004. 12, N 6. 627-636.
  2. Luenberger D. Linear and nonlinear programming. Reading: Addison-Wesley, 1984.
  3. Pedregal P. Introduction to optimization. New York: Springer, 2003.
  4. Titarenko V., Yagola A. The problems of linear and quadratic programming for ill-posed problems on some compact sets // J. of Inverse and Ill-Posed Problems. 2003. 11, N 3. 311-328.
  5. Titarenko V., Yagola A. Linear ill-posed problems on sets of convex functions on two-dimensional sets // J. of Inverse and Ill-Posed Problems. 2006. 14, N 7. 735-750.
  6. Yagola A., Titarenko V. Numerical methods and regularization techniques for the solution of ill-posed problems // Inverse Problems in Engineering: Theory and Practice / Ed. by H. Orlande. Rio de Janeiro: E-papers, 2002. Vol. 1. 49-58.
  7. Yagola A., Titarenko V. Using a priori information about a solution of an ill-posed problem for constructing regularizing algorithms and their applications // Inverse Problems in Science and Engineering. 2007. 15, N 1. 3-17.
  8. Леонов А.С. Об апостериорных оценках точности решения линейных некорректно поставленных задач и экстраоптимальных регуляризующих алгоритмах // Вычислительные методы и программирование. 2010. 11, № 1. 18-28.
  9. Вулих Б.З. Введение в теорию полуупорядоченных пространств. М.: Физматлит, 1961.
  10. Титаренко В.Н., Ягола А.Г. Метод отсечения выпуклых многогранников и его применение к некорректным задачам // Вычислительные методы и программирование. 2000. 1, No. 1. 10-15.
  11. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984.
  12. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.