Application of graphic processors for the numerical simulation of viscous incompressible fluid flows in domains of complex geometry by the immersed boundary method
Keywords:
Navier-Stokes equations
immersed boundary method
CUDA
graphic processors
Abstract
An application of graphic processors for the numerical simulation of viscous incompressible fluid flows in domains of complex geometry is considered. The immersed boundary method is used to describe the curvilinear geometry on rectangular grids. In order to estimate the efficiency of numerical methods on the graphic processor architecture, the flows around a circular cylinder and a group of cylinders are simulated. As an example of a problem with moving boundaries, a flow past an oscillating circular cylinder is solved numerically.
Section
Section 1. Numerical methods and applications
References
- Mittal R., Iaccarino G. Immersed boundary methods // Annual Review of Fluid Mechanics. 2005. 37. 239-261.
- Peskin C.S. The fluid dynamics of heart valves: experimental, theoretical and computational methods // Annual Review of Fluid Mechanics. 1982. 14. 235-259.
- Tseng Y.-H., Ferziger J.H. A ghost-cell immersed boundary method for flow in complex geometry // J. of Computational Physics. 2003. 192, N 2. 593-623.
- Mohd-Yusof J. Combined immersed boundary/B-spline methods for simulation of flow in complex geometries // CTR Annual Research Briefs, Center for Turbulence Research. Stanford: Stanford University Press, 1997. 317-328.
- Goldstein D., Handler R., Sirovich L. Modeling a no-slip flow boundary with an external force field // J. of Computational Physics. 1993. 105, N 2. 354-366.
- Lai M.-C., Peskin C.S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity // J. of Computational Physics. 2000. 160, N 2. 705-719.
- Saiki E.M., Biringen S. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method // J. of Computational Physics. 1996. 123. 450-465.
- Fadlun E.A., Verzicco R. Orlandi P., Mohd-Yusof J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations // J. of Computational Physics. 2000. 161, N 1. 35-60.
- Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations // Computers and Fluids. 2004. 33, N 3. 375-404.
- Yang J.M., Balaras E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries // J. of Computational Physics. 2006. 215, N 1. 12-40.
- Su S.-W., Lai M.-C., Lin C.-A. An immersed boundary technique for simulating complex flows with rigid boundary // Computers and Fluids. 2007. 36, N 2. 313-324.
- Yang X., Zhang X., Li Z., He G.-W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations // J. of Computational Physics. 2009. 228, N 20. 7821-7836.
- Van der Vorst H.A. Iterative Krylov methods for large linear systems. Cambridge: Cambridge University Press, 2003.
- Dongarra J.J., Duff I.S., Sorensen D.C., Van der Vorst H.A. Numerical linear algebra for high-performance computers. Philadelphia: SIAM, 1998.
- Ольшанский М.А. Лекции и упражнения по многосеточным методам. М.: Изд-во Моск. ун-та, 2003.
- Шайдуров В.В. Многосеточные методы конечных элементов. М.: Наука, 1989.
- Wesseling P. An introduction to multigrid methods. New York: Wiley, 1992.
- Chronopoulos A.T., Gear C.W. S-step iterative methods for symmetric linear systems // J. of Computational and Applied Mathematics. 1989. 25, N 2. 153-168.
- Demmel J., Heath M., Van der Vorst H. Parallel numerical linear algebra // Acta Numerica. 1993. 2. 111-197.
- Harrar D.L., Ortega J.M. Optimum m-step SSOR preconditioning // J. of Computational and Applied Mathematics. 1988. 24, N 1-2. 195-198.
- Benzi M., Meyer C.D., Tuma M. A sparse approximate inverse preconditioner for the conjugate gradient method // SIAM J. on Scientific Computing. 1996. 17, N 5. 1135-1149.
- Cosgrove J.D. F., Dias J.C., Griewank A. Approximate inverse preconditionings for sparse linear systems // Int. J. of Computer Mathematics. 1992. 44, N 1-4. 91-110.
- Molemaker J., Cohen J.M., Patel S., Noh J. Low viscosity flow simulations for animation // Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Associations, 2008. 9-18.
- Bolz J., Farmer I., Grinspun E., Schröder P. Sparse matrix solvers on the GPU: conjugate gradients and multigrid // ACM Transactions on Graphics. 2003. 22, N 3. 917-924.
- Buatois L., Caumon G., Levy B. Concurrent number cruncher: a GPU implementation of a general sparse linear solver // Int. J. of Parallel, Emergent and Distributed Systems. 2009. 24, N 3. 205-223.
- Ament M., Knittel G., Weiskopf D., Strasser W. A parallel preconditioned conjugate gradient solver for the Poisson problem on a multi-GPU platform // Proc. of the 18th Euromicro Conference on Parallel, Distributed and Network-based Processing. Los Amitos: IEEE Computer Society, 2010. 583-592.
- DeLong M.A. SOR as a preconditioner. PhD Thesis. University of Virginia. Charlottesville, 1997.
- Stam J. Stable fluids // Proc. of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1999. 121-128.
- Harris M.J. Real-time cloud simulation and rendering. PhD Thesis. University of North Carolina. Chapel Hill, 2003.
- Четверушкин Б.Н. Прикладная математика и проблемы использования высокопроизводительных вычислительных систем // Тр. МФТИ. 2011. 3, № 4. 55-67.
- Li W., Wei X., Kaufman A. Implementing lattice Boltzmann computation on graphics hardware // The Visual Computer. 2003. 19, N 7-8. 444-456.
- Rossinelli D., Bergdorf M., Cottet G.-H., Koumoutsakos P. GPU accelerated simulations of bluff body flows using vortex particle methods // J. of Computational Physics. 2010. 229, N 9. 3316-3333.
- Wei X., Zhao Y., Fan Z., Li W., Qui F., Yoakum-Stover S., Kaufman A.E. Lattice-based flow field modeling // IEEE Trans. on Visualization and Computer Graphics. 2004. 10, N 6. 719-729.
- Tölke J., Krafczyk M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD // Int. J. of Computational Fluid Dynamics. 2008. 22, N 7. 443-456.
- Chorin A.J. Numerical solution of the Navier-Stokes equations // Mathematics of Computation. 1968. 22, N 104. 745-762.
- Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations // J. of Computational Physics. 1985. 59, N 2. 308-323.
- Brown D.L., Cortez R., Minion M.L. Accurate projection methods for the incompressible Navier-Stokes equations // J. of Computational Physics. 2001. 168, N 2. 464-499.
- Morinishi Y., Lund T.S., Vasilyev O.V., Moin P. Fully conservative higher order finite difference schemes for incompressible flow // J. of Computational Physics. 1998. 143, N 1. 90-124.
- Ol’shanskii M.A., Staroverov V.M. On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid // Int. J. for Numerical Methods in Fluids. 2000. 33, N 4. 499-534.
- Kirkpatrick M.P., Armfield S.W., Kent J.H. A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid // J. of Computational Physics. 2003. 184, N 1. 1-36.
- Ingram D.M., Causon D.M., Mingham C.G. Developments in Cartesian cut cell methods // Mathematics and Computers in Simulation. 2003. 61, N 3-6. 561-572.
- Li Z., Lai M.-C. The immersed interface method for the Navier-Stokes equations with singular forces // J. of Computational Physics. 2001. 171, N 2. 822-842.
- Ghias R., Mittal R., Dong H. A sharp interface immersed boundary method for compressible viscous flows // J. of Computational Physics. 2007. 225, N 1. 528-553.
- Lee J., Kim J., Choi H., Yang K.-S. Sources of spurious force oscillations from an immersed boundary method for moving-body problems // J. of Computational Physics. 2011. 230, N 7. 2677-2695.
- Hung Seo J., Mittal R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations // J. of Computational Physics. 2011. 230, N 19. 7347-7363.
- Roma A.M., Peskin C.S., Berger M.J. An adaptive version of the immersed boundary method // J. of Computational Physics. 1999. 153, N 2. 509-534.
- Pourquie M., Breugem W.P., Boersma B.J. Some issues related to the use of immersed boundary methods to represent square obstacles // Int. J. for Multiscale Computational Engineering. 2009. 7, N 6. 509-522.
- Domenichini F. On the consistency of the direct forcing method in the fractional step solution of the Navier-Stokes equations // J. of Computational Physics. 2008. 227, N 12. 6372-6384.
- Guy R.D., Hartenstine D.A. On the accuracy of direct forcing immersed boundary methods with projection methods // J. of Computational Physics. 2010. 229, N 7. 2479-2496.
- Taira K., Colonius T. The immersed boundary method: a projection approach // J. of Computational Physics. 2007. 225, N 2. 2118-2137.
- Mori Y., Peskin C.S. Implicit second-order immersed boundary methods with boundary-mass // Computer Methods in Applied Mechanics and Engineering. 2008. 197, N 25-28. 2049-2067.
- Pinelli A., Naqavi I.Z., Piomelli U., Favier J. Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers // J. of Computational Physics. 2010. 229, N 24. 9073-9091.
- Винников В.В., Ревизников Д.Л. Применение декартовых сеток для решения уравнений Навье-Стокса в областях с криволинейными границами // Математическое моделирование. 2005. 17, № 8. 15-30.
- Мортиков Е.В. Применение метода погруженной границы для решения системы уравнений Навье-Стокса в областях сложной конфигурации // Вычислительные методы и программирование. 2010. 11, № 1. 36-46.
- Gao T., Tseng Y.-H., Lu X.-Y. An improved hybrid Cartesian/immersed boundary method for fluid-solid flows // Int. J. for Numerical Methods in Fluids. 2007. 55, N 12. 1189-1211.
- Udaykumar H.S., Mittal R., Rampunggoon P., Khanna A. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries // J. of Computational Physics. 2001. 174, N 1. 345-380.
- Braza M., Chassaing P., Minh H.H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder // J. of Fluid Mechanics. 1986. 165. 79-130.
- Liu C., Zheng X., Sung C.H. Preconditioned multigrid methods for unsteady incompressible flows // J. of Computational Physics. 1998. 139, N 1. 35-57.
- Calhoun D. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions // J. of Computational Physics. 2002. 176, N 2. 231-275.
- Herfjord K. A study of two-dimensional separated flow by a combination of the finite element method and Navier-Stokes equations. Dr. Ing. Thesis. University of Trondheim. Trondheim, 1996.
- Berthelsen P.A., Faltinsen O.M. A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries // J. of Computational Physics. 2008. 227, N 9. 4354-4397.
- Wu Y.L., Shu C. Application of local DFD method to simulate unsteady flows around an oscillating circular cylinder // Int. J. for Numerical Methods in Fluids. 2008. 58, N 11. 1223-1236.
- Williamson C.H. K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers // J. of Fluid Mechanics. 1989. 206. 579-627.
- Schäfer M., Turek S. The benchmark problem flow around a cylinder // Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics. Hirschel (ed.). 52. Vieweg: Wiesbaden, 1996. 547-566.
- Ongoren A., Rockwell D. Flow structure from an oscillating cylinder. Part 1. Mechanisms of phase shift and recovery in the near wake // J. of Fluid Mechanics. 1988. 191. 197-223.
- Bishop R.E. D., Hassan A.Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid // Proc. of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1964. 277, N 1368. 51-75.
- Guilmineau E., Queutey P. A numerical simulation of vortex shedding from an oscillating circular cylinder // J. of Fluids and Structures. 2002. 16, N 6. 773-794.
- Глазунов А.В. Вихреразрешающее моделирование турбулентности с использованием смешанного динамического локализованного замыкания. Часть I. Формулировка задачи, описание модели и диагностические численные тесты // Изв. РАН. Физика атмосферы и океана. 2009. 45, № 1. 7-28.
- Sagaut P. Large eddy simulation for incompressible flows. An introduction. Berlin: Springer, 2006.