Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography

Authors

  • A.V. Goncharsky
  • S.Yu. Romanov

Keywords:

inverse coefficient problems
wave equation
computer simulation
ultrasound tomography
parallel computing
supercomputer

Abstract

This paper deals with the development of efficient methods for solving inverse problems of wave tomography. An inverse problem is considered as a coefficient inverse problem for the wave equation. Supercomputer technologies allow one to obtain high-resolution tomographic images of diagnosed objects.


Published

2012-03-11

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.V. Goncharsky

S.Yu. Romanov


References

  1. Natterer F., Wubbeling F. A propagation-backpropagation method for ultrasound tomography // Inverse Problems. 1995. 11, N 6. 1225-1232.
  2. Beilina L., Klibanov M.V., Kokurin M.Yu. Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. Chalmers Preprint Series. Preprint 2009:47. Gothenburg: University of Gothenburg, 2009.
  3. Duric N., Littrup P., Poulo L., et al. Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype // Medical Physics. 2007. 34. 773-785.
  4. Gemmeke H., Menshikov A., Tchernikovski D., et al. Hardware setup for the next generation of 3D ultrasound computer tomography // Proc. IEEE Nuclear Science Simposium. Knoxville, 2010. 2449-2454.
  5. Bakushinsky A.B., Goncharsky A.V. Ill-posed problems. Theory and applications. Dordrect: Kluwer Academic Publ., 1994.
  6. Гончарский А.В., Овчинников С.Л., Романов С.Ю. Об одной задаче волновой диагностики // Вестн. МГУ. Сер. 15. Вычисл. матем. и киберн. 2010. № 1. 7-13.
  7. Гончарский А.В., Романов С.Ю. О двух подходах к решению коэффициентных обратных задач для волновых уравнений // Журн. вычисл. матем. и матем. физики. 2012. 52, № 2. 1-7.
  8. Гончарский А.В., Романов С.Ю. Об одной задаче ультразвуковой томографии // Вычислительные методы и программирование. 2011. 12, № 1. 317-320.