Investigation of the stability of explicit finite difference-based lattice Boltzmann schemes



kinetic schemes, lattice Boltzmann equation, finite difference-based lattice Boltzmann schemes, stability with respect to initial conditions, Neumann method, stability domain


The stability problem is considered for finite difference-based lattice Boltzmann kinetic schemes for simulating the plane flows of a viscous incompressible isothermal fluid. Stability is studied for two steady modes of flow in an unbounded domain. The stability analysis is performed with respect to initial conditions using the Neumann method in a linear approximation. A number of stability domains are constructed and studied in the space of input parameters. It is shown that the schemes under consideration are conditionally stable. It is demonstrated that the stability domains for a scheme with the first order upwind differences are included the maximum amount of points in a wide range of input parameters. It is shown for the case of equal time and space grid steps that the areas of the stability domains for the lattice Boltzmann equation are larger than for the cases of finite difference-based schemes.

Author Biography

G.V. Krivovichev

St Petersburg University,
Faculty of Applied Mathematics and Control Processes
Universitetskii prospekt 35, Petergof, Saint Petersburg, 198504, Russia
• Associate Professor


  1. Четверушкин Б.Н. Кинетически-согласованные схемы в газовой динамике. М.: Изд-во Моск. гос. ун-та, 1999.
  2. Wolf-Gladrow D.A. Lattice-gas cellular automata and lattice Boltzmann models - an introduction. Berlin: Springer-Verlag, 2005.
  3. Мачин Д.А., Четверушкин Б.Н. Кинетические и lattice Boltzmann схемы // Математическое моделирование. 2004. 16, № 3. 87-94.
  4. Куперштох А.Л. Трехмерное моделирование двухфазных систем типа жидкость-пар методом решеточных уравнений Больцмана на GPU // Вычислительные методы и программирование. 2012. 13. 130-138.
  5. Куперштох А.Л. Моделирование течений с границами раздела фаз жидкость-пар методом решеточных уравнений Больцмана // Вестник НГУ. Сер. «Математика, механика, информатика». 2005. 5, вып. 3. 29-42.
  6. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967.
  7. Seta T., Takahashi R. Numerical stability analysis of FDLBM // J. of Statistical Physics. 2002. 7, N 1/2. 557-572.
  8. Mei R., Shyy W. On the finite difference-based lattice Boltzmann method in curvilinear coordinates // J. of Computational Physics. 1998. 143. 426-448.
  9. Sofonea V., Sekerka R.F. Viscosity of finite difference lattice Boltzmann models // J. of Computational Physics. 2003. 184. 422-434.
  10. Sofonea V., Lamura A., Gonnella G., Cristea A. Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems // Phys. Rev. E. 2004. 70. 046702-1-046702-9.
  11. McNamara G.R., Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata // Phys. Rev. Letters. 1988. 61, N 20. 2332-2335.
  12. He X., Luo L.-S. A priori derivation of the lattice Boltzmann equation // Phys. Rev. E. 1997. 55, N 6. R6333-R6336.
  13. Abe T. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation // J. of Computational Physics. 1997. 131, N 1. 241-246.
  14. Luo L.-S. Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases // Phys. Rev. E. 2000. 62, N 4. 4982-4996.
  15. He X., Luo L.-S. Lattice Boltzmann model for the incompressible Navier-Stokes equation // J. of Statistical Physics. 1997. 88, N 3/4. 927-944.
  16. Sterling J.D., Chen S. Stability analysis of lattice Boltzmann methods // J. of Computational Physics. 1996. 123. 196-206.
  17. Kupershtokh A.L. Criterion of numerical instability of liquid state in LBE simulations // Computers and Mathematics with Applications. 2010. 59. 2236-2245.
  18. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. М.: Мир, 1972.
  19. Smith B., Boyle J., Dongarra J., Garbow B., Ikebe Y., Klema V., Moler C. Matrix eigensystem routines. EISPACK Guide. Lecture Notes in Computer Science. Vol. 6. Berlin: Springer-Verlag, 1976.
  20. Кривовичев Г.В. О применении интегро-интерполяционного метода к построению одношаговых решеточных кинетических схем Больцмана // Вычислительные методы и программирование. 2012. 13. 19-27.
  21. Rector D.R., Stewart M.L. A semi-implicit lattice method for simulating flow // J. of Computational Physics. 2010. 229. 6732-6743.
  22. Cao N., Chen S., Jin S., Martinez D. Physical symmetry and the lattice symmetry in the lattice Boltzmann method // Phys. Rev. E. 1997. 55, N 1. R21-R24.
  23. Latt J., Chopard B., Malaspinas O., Deville M., Michler A. Straight velocity boundaries in the lattice Boltzmann method // Phys. Rev. E. 2008. 77. 056703-1-056703-16.
  24. Verschaeve J.C. G. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability // Phys. Rev. E. 2009. 80. 036703-1-056703-23.



How to Cite

Кривовичев Г.В. Investigation of the Stability of Explicit Finite Difference-Based Lattice Boltzmann Schemes // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2012. 13. 332-340



Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>