Structural properties of grid operators in node implicit operator-difference schemes of two-dimensional gas dynamics on triangular grids and increasing the computational efficiency of object-oriented algorithms

Authors

  • N.V. Ardelyan Lomonosov Moscow State University
  • M.N. Sablin Lomonosov Moscow State University

Keywords:

operator-difference schemes, grid problem, unstructured triangular grids, grid operators, gas dynamics

Abstract

The paper is devoted to the analysis of structural properties of grid analogues of invariant differential operators on unstructured triangular grids and to the improvement the object-oriented algorithms for numerical implementation of two-dimensional gas dynamics implicit grid problems for increasing the computational efficiency of these algorithms. The axial-symmetry case in a cylindrical coordinate system is considered. Some node problems are studied when the grid functions are defined and the grid equations are written in the nodes of the grid in use.

Author Biographies

N.V. Ardelyan

M.N. Sablin

References

  1. Самарский А.А. Теория разностных схем. М.: Наука, 1977.
  2. Самарский А.А., Гулин А.В. Устойчивость разностных схем. М.: Наука, 1973.
  3. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
  4. Арделян Н.В., Космачевский К.В., Черниговский С.В. Вопросы построения и исследования полностью консервативных разностных схем магнитной газодинамики. М.: Изд-во Моск. ун-та, 1987.
  5. Страуструп Б. Язык программирования C++. СПб., М.: Невский Диалект, Изд-во «БИНОМ», 1999.
  6. Саблин М.Н. Программная реализация численного решения операторно-разностных сеточных задач двумерной газовой динамики с использованием системы классов C++ // Вычислительные методы и программирование. 2006. 7, № 1. 144-154.
  7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970.
  8. Саблин М.Н., Арделян Н.В. Двумерная операторно-разностная схема газовой динамики в лагранжевых координатах на нерегулярной треугольной сетке, обладающая свойством локальной аппроксимации вблизи оси симметрии // Прикл. матем. и информатика, № 10. М.: Диалог-МГУ, 2002. 15-33.
  9. Саблин М.Н., Арделян Н.В. Операторная сеточная аппроксимация задач двумерной газовой динамики в подвижных координатах на нерегулярной сетке // Прикл. матем. и информатика, № 11. М.: Диалог-МГУ, 2002. 5-37.
  10. Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986.
  11. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980.

Published

06-06-2012

How to Cite

Арделян Н.В., Саблин М.Н. Structural Properties of Grid Operators in Node Implicit Operator-Difference Schemes of Two-Dimensional Gas Dynamics on Triangular Grids and Increasing the Computational Efficiency of Object-Oriented Algorithms // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2012. 13. 352-365

Issue

Section

Section 1. Numerical methods and applications