Simulation of multi-material hydrodynamic flows using adaptive mesh refinement

Authors

  • M.E. Povarnitsyn
  • A.S. Zakharenkov
  • P.R. Levashov
  • K.V. Khishchenko

Keywords:

adaptive meshes
multi-material flows
parallel computing

Abstract

A hydrodynamic multi-material model combined with a procedure of block-structured meshes construction implemented in the Chombo package is considered. The application of adaptive meshes allows one to efficiently redistribute computer resources as well as to save the machine memory when solving multi-dimensional problems.


Published

2012-09-28

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

M.E. Povarnitsyn

A.S. Zakharenkov

P.R. Levashov

K.V. Khishchenko


References

  1. Kanel G.I., Razorenov S.V., Baumung K., Singer J. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point // J. of Applied Physics. 2001. 90. 136-143.
  2. Povarnitsyn M., Khishchenko K., Levashov P. Hypervelocity impact modeling with different equations of state // Int. J. of Impact Engineering. 2006. 33. 625-633.
  3. Olson R.E., Suter L.J., Kline J.L., et al. Lasnex simulations of NIF vacuum hohlraum commissioning experiments // J. of Physics: Conference Series. 2010. 244. 032057.
  4. Berger M.J., Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations // J. of Computational Physics. 1984. 53. 484-512.
  5. Colella P., Graves D.T., Keen N.D., et al. Chombo software package for AMR applications (design document) (https://seesar.lbl.gov/anag/chombo/ChomboDesign-2.0.pdf).
  6. Бахрах С., Глаголева Ю., Самигулин М. Расчет газодинамических течений на основе метода концентраций // Докл. АН СССР. 1981. 257, № 3. 566-569.
  7. Miller G.H., Puckett E.G. A high-order Godunov method for multiple condensed phases // J. of Computational Physics. 1996. 128. 134-164.
  8. Youngs D.L. Time-dependent multi-material flow with large fluid distortion // Numerical Methods for Fluid Dynamics / Ed. by K.W. Morton and M.J. Baines. New York: Academic Press, 1982. 273-285.
  9. Youngs D.L. An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. Rep. AWRE/44/92/35. Aldermaston: Atomic Weapons Research Establishment, 1987.
  10. Khishchenko K.V. Equation of state and phase diagram of tin at high pressures // J. Phys.: Conf. Ser. 2008. 121. 022025.
  11. Khishchenko K.V. Equation of state for tungsten in the region of high pressures and temperatures // Physics of Extreme States of Matter 2005 / Ed. by V.E. Fortov et al. Chernogolovka: IPCP, 2005. 170-172.

 How to cite   
Povarnitsyn M.E., Zakharenkov A.S., Levashov P.R. and Khishchenko K.V. Simulation of multi-material hydrodynamic flows using adaptive mesh refinement // Numerical Methods and Programming. 2012. 13, No 3. 424–433.

TEX CODE:

Povarnitsyn M. , Zakharenkov A. , Levashov P. et al., (2012) “Simulation of multi-material hydrodynamic flows using adaptive mesh refinement,” Numerical Methods and Programming, vol. 13, no. 3, pp. 424–433.

TEX CODE:

M. Povarnitsyn, A. Zakharenkov, P. Levashov et al., “Simulation of multi-material hydrodynamic flows using adaptive mesh refinement,” Numerical Methods and Programming 13, no. 3 (2012): 424–433

TEX CODE:

Povarnitsyn M. , Zakharenkov A. , Levashov P. et al. Simulation of multi-material hydrodynamic flows using adaptive mesh refinement. Numerical Methods and Programming. 2012;13(3):424–433.(In Russ.).

TEX CODE: