Sink-algorithms for the simulation of electron transfer kinetics

Authors

  • S.V. Feskov

Keywords:

electron transfer
donor-acceptor complex
Zusman model
Jortner-Bixon model
dynamic solvent effect

Abstract

Procedures for computing Green’s function for the equations of the two-level Zusman model and the stochastic Jortner-Bixon model are proposed. The algorithms for the numerical simulation of electron transfer kinetics in donor-acceptor complexes in polar solvents are developed. The efficiency of these algorithms is analyzed and compared with the efficiency of the recrossing algorithm developed earlier. Test simulations of the reaction kinetics are performed; their results show a good correspondence with the known analytic estimates in some particular cases. This work was supported by the Russian Ministry of Education and Science (project 14.740.11.0374) and the Russian Foundation for Basic Research (project 11-03-00736а).


Published

2012-10-09

Issue

Section

Section 1. Numerical methods and applications

Author Biography

S.V. Feskov


References

  1. Зусман Л.Д. К теории реакций электронного переноса в полярных растворителях // Теор. и экспер. химия. 1979. 15, № 3. 227-233.
  2. Zusman L.D. Outer-sphere electron transfer in polar solvents // Chem. Phys. 1980. 49, N 2. 295-304.
  3. Zusman L.D. The theory of electron transfer reactions in solvents with two characteristic relaxation times // Chem. Phys. 1988. 119, N 1. 51-61.
  4. Jortner J., Bixon M. Intramolecular vibrational excitations accompanying solvent-controlled electron transfer reactions // J. Chem. Phys. 1988. 88, N 1. 167-170.
  5. Ivanov A.I., Potovoi V.V. Theory of non-thermal electron transfer // Chem. Phys. 1999. 247, N 2. 245-259.
  6. Marcus R.A. On the theory of oxidation-reduction reactions involving electron transfer // J. Chem. Phys. 1956. 24, N 5. 966-978.
  7. Feskov S.V., Ionkin V.N., Ivanov A.I. Effect of high frequency modes and hot transitions on free energy gap dependence of charge recombination rate // J. Phys. Chem. A. 2006. 110, N 43. 11919-11925.
  8. Abate J., Whitt W. Numerical inversion of Laplace transforms of probability distributions // ORSA J. Comp. 1995. 7, N 1. 38-43.
  9. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes: the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press, 2007.
  10. Феськов С.В. Метод броуновского моделирования в задачах расчета динамики электронного переноса // Вычислительные методы и программирование. 2009. 10, № 2. 41-49.
  11. Feskov S.V., Kichigina A.O., Ivanov A.I. Kinetics of nonequilibrium electron transfer in photoexcited Ruthenium(II)-Cobalt(III) complexes // J. Phys. Chem. A. 2011. 115, N 9. 1462-1471.
  12. Feskov S.V., Gladkikh V., Burshtein A.I. Kinetics of non-thermal electron transfer controlled by the dynamic solvent effect // Chem. Phys. Lett. 2008. 458, N 1-3. 71-75.
  13. Feskov S.V., Burshtein A.I. Double-channel photoionization followed by geminate charge recombination/separation // J. Phys. Chem. A. 2009. 113, N 48. 13528-13540.
  14. Maroncelli M., Kumar V.P., Papazyan A. A simple interpretation of polar solvation dynamics // J. Phys. Chem. 1993. 97, N 1. 13-17.
  15. Kuznetsov A.M. Charge transfer in physics, chemistry and biology. Amsterdam: Gordon &; Breach, 1995.
  16. Calef D.F., Wolynes P.G. Classical solvent dynamics and electron transfer. 1. Continuum theory // J. Phys. Chem. 1983. 87, N 18. 3387-3400.
  17. Zusman L.D. Dynamical solvent effects in electron transfer reactions // Zeit. Phys. Chem. 1994. 186, N 1. 1-29.