High performance modeling of modern deposition processes for optical coating nanotechnology

Authors

  • A.V. Tikhonravov
  • I.V. Kochikov
  • T.V. Amotchkina
  • F.V. Grigoriev
  • O.A. Kondakova
  • V.B. Sulimov

Keywords:

high performance modeling
molecular dynamics
thin films
deposition processes

Abstract

Applicability of the method of molecular dynamics (MD) to the simulation of modern processes of deposition of optical coatings is studied. The choice of physical and technological aspects of deposition processes is explained and the most meaningful parameters of computer simulation are estimated. The first results of MD simulation of silica dioxide film growth are discussed. These results demonstrate good perspectives of high performance modeling of deposition processes.


Published

2012-10-15

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.V. Tikhonravov

I.V. Kochikov

T.V. Amotchkina

F.V. Grigoriev

O.A. Kondakova

V.B. Sulimov


References

  1. Optical Interference Coatings / Kaiser N., Pulker H., Eds. Berlin: Springer, 2003.
  2. Тихонравов А.В. Обратные задачи оптики сплошных сред // Вестник Моск. ун-та. Серия 15. Вычислительная математика и кибернетика. 2006. № 3. 66-76.
  3. Tikhonravov A., Trubetskov M. Modern design tools and a new paradigm in optical coatings design // Appl. Optics. 2012. 57.
  4. Pulker H. Film deposition methods // Optical Interference Coatings / Kaiser N., Pulker H., Eds. Berlin: Springer, 2003. 131-153.
  5. Schlick T. Molecular modeling and simulation. New York: Springer, 2002.
  6. Rapaport D.C. The art of molecular dynamics simulation. Cambridge: Cambridge University Press, 2004.
  7. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. 1. Кинетическая теория. Новосибирск: НГАСУ, 2004.
  8. Hinchliffe A. Molecular modelling for beginners. Chichester: Wiley, 2008.
  9. Tuckerman M.E. Statistical mechanics: theory and molecular simulation (Oxford Graduate Texts). Oxford: Oxford University Press, 2010.
  10. Marx D., Hutter J. Ab initio molecular dynamics: basic theory and advanced methods. Cambridge: Cambridge University Press, 2009.
  11. Норман Г.Э., Стегайлов В.В. Стохастическая теория метода классической молекулярной динамики // Матем. моделирование. 2012. 24, № 6. 3-44.
  12. Germann T.C., Kadau K. Trillion atom molecular dynamics simulation becomes a reality // Int. J. Mod. Phys. C. 2008. 19. 1315-1319.
  13. Coquil F., Fang J., Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica // Int. J. Heat and Mass Transfer. 2011. 54, N 21-22. 4540-4548.
  14. Taguchi M., Hamaguchi S. MD simulations of amorphous SiO_2 thin film formation in reactive sputtering deposition processes // Thin Solid Films. 2007. 515. 4879-4882.
  15. Tangneya P., Scandolo S. An ab initio parametrized interatomic force field for silica // J. Chem. Phys. 2002. 117. 8898-8905.
  16. Pedone A., Malavasi G., Menziani M.C., Segre U., Musso F., Corno M., Civalleri B., Ugliengo P. FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations // Chem. Mater. 2008. 20. 2522-2531.
  17. Sayle D.C., Catlow C.R. A., Dulamita N., Healy M.J. F., Maicaneanu S.A., Slater B., Watson G.W. Modelling oxide thin films // Molecular Simulation. 2002. 28. 683-725.
  18. Hasnaoui A., Politano O., Salazar J.M., Aral G., Kalia R.K., Nakano A., Vashishta P. Molecular dynamics simulation of the nano-scale room-temperature oxidation of aluminum single crystals // Surface Science. 2005. 579. 47-57.
  19. Adamovi’c D., Chirita V., Münger E.P., Hultman L., Greene J.E. Kinetic pathways leading to layer-by-layer growth from hyperthermal atoms: a multibillion time step molecular dynamics // Phys. Rev. B. 2007. 76. 115418.
  20. Taguchi M., Hamaguchi S. MD simulation of amorphous SiO_2 thin film formation in reactive sputtering deposition processes // Thin Solid Films. 2007. 515. 4879-4892.
  21. Georgieva V., Saraiva M., Jehanathan N., Lebelev O.I., Depla D., Bogaerts A. Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments // J. Phys. D: Appl. Phys. 2009. 42. 065107.
  22. Baguer N., Georgieva V., Calderin L., Todorov I.T., van Gils S., Bogaerts A. Study of the nucleation and growth of TiO_2 and ZnO films by means of molecular dynamics simulations // J. Cryst. Growth. 2009. 311. 4034-4043.
  23. Saraiva M., Georgieva V., Mahieu S., van Aeken K., Bogaerts A., Depla D. Compositional effects on the growth of Mg(M)O films // J. Appl. Phys. 2010. 107. 034902.
  24. Georgieva V., Todorov I.T., Bogaerts A. Molecular dynamics simulation of oxide thin film growth: importance of the inter-atomic interaction potential // Chemical Physics Letters. 2010. 485. 315-319.
  25. Landmann M., Köhler T., Köppen S., Rauls E., Frauenheim T., Schmidt W.G. Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO_2 // Phys. Rev. B. 2012. 86. 064201.
  26. Prasai B., Cai B., Underwood M.K., Lewis J.P., Drabold D.A. Properties of amorphous and crystalline titanium dioxide from first principles // J. Mater. Sci. 2012. 47. 7515-7521.
  27. Pochon S., Pearson D. Ion beam deposition (www.oxford-instruments.com).
  28. Stevenson I., Zinone F., Morton D. Choosing a chamber (www.dentonvacuum.com).
  29. www.mldtech.com
  30. www.veeco.com
  31. Tikhonravov A. et al. Optical parameters of oxide films typically used in optical coating production // Appl. Optics. 2011. 50. 75-85.
  32. Kaiser N. Some fundamentals of optical thin film growth // Optical Interference Coatings / Kaiser N., Pulker H., Eds. Berlin: Springer, 2003. 59-80.
  33. Hoang V.V. Molecular dynamic simulation of amorphous SiO_2 nanoparticles // J. Phys. Chem. B. 2007. 111. 12649-12656.
  34. Von Alfthan S., Kuronen A., Kaski K. Realistic models of amorphous silica: a comparative study of different potentials // Phys. Rev. B. 2003. 68. 073203.
  35. www.gromacs.org