Implementation of the Taylor series method for solving ordinary differential equations

Authors

  • L.K. Babadzanjanz
  • A.I. Bolshakov

Keywords:

polynomial ODE system
Taylor series method
dynamics

Abstract

New variable-step size variable-order algorithm and software implementations of the explicit Taylor series method for solving nonstiff ordinary differential equations with polynomial right-hand sides are proposed. The version of the method being used is based on new simple formulas for the recursive computation of the Taylor coefficients of the solutions and on new rigorous a priori local error estimates combined with conventional nonstrict a posteriori considerations. The author’s Fortran 95 program is compared with three other existing Fortran programs of good quality that implement Dormand-Prince, Gragg-Bulirsch-Stoer and Taylor series explicit methods, respectively. Numerical experiments proves the competitive abilities of the program, its applicability and reliability to solve real problems of dynamics.


Published

2012-10-22

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

L.K. Babadzanjanz

St Petersburg University,
Faculty of Applied Mathematics and Control Processes
Universitetskii prospekt 35, Petergof, Saint Petersburg, 198504, Russia
• Professor

A.I. Bolshakov

St Petersburg University,
Faculty of Applied Mathematics and Control Processes
Universitetskii prospekt 35, Petergof, Saint Petersburg, 198504, Russia
• PhD Student


References

  1. Бабаджанянц Л.К. Метод рядов Тейлора // Вестн. Санкт-Петербургского ун-та. Сер. 10. 2010. № 3. 13-29.
  2. Бабаджанянц Л.К. Метод дополнительных переменных // Вестн. Санкт-Петербургского ун-та. Сер. 10. 2010. № 1. 3-11.
  3. Бабаджанянц Л.К., Брэгман К.М. Алгоритм метода дополнительных переменных // Вестн. Санкт-Петербургского ун-та. Сер. 10. 2012.
  4. Rall L.B. Automatic differentiation: techniques and applications // Lecture Notes in Computer Science. Vol. 120. Berlin: Springer-Verlag, 1981.
  5. Corliss G.F., Chang Y.F. Solving ordinary differential equations using Taylor series // ACM Trans. on Math. Software. 1982. 8. 114-144.
  6. Berz M., Bischof C., Corliss G.F., Griewank A. Computational differentiation: techniques, applications, and tools. Philadelphia: SIAM, 1996.
  7. Lara M., Elipe A., Palacios M. Automatic programming of recurrent power series // Math. Comput. Simul. 1999. 49. 351-362.
  8. Griewank A. Evaluating derivatives. Philadelphia: SIAM, 2000.
  9. Abad A., Barrio R., Blesa F., Rodriguez M. Breaking the limits: the Taylor series method // Appl. Math. and Computation. 2011. 217, N 20. 7940-7954.
  10. Rodriguez M., Barrio R. Reducing rounding errors and achieving Brouwer’s law with Taylor series method // Appl. Numer. Math. 2012. 62, N 8. 1014-1024.
  11. Parker G.E., Sochacki J.S. Implementing the Picard iteration // Neural, Parallel and Scientific Computation. 1996. 4. 97-112.
  12. Parker G.E., Sochacki J.S. A Picard-McLaurin theorem for initial value PDE’s // Abstract and Appl. Analysis. 2000. 5. 47-63.
  13. Pruett C.D., Rudmin J.W., Lacy J.M. An adaptive N-body algorithm of optimal order // J. of Comput. Physics. 2003. 187. 298-317.
  14. Carothers D.C., Parker G.E., Sochacki J.S., Warne P.G. Some properties of solutions to polynomial systems of differential equations // Electron. J. Diff. Eqns. 2005. N 40. 1-17.
  15. Miletics E., Molnárka G. Taylor series method with numerical derivatives for initial value problems // J. Comput. Methods in Sciences and Engineering. 2004. 4, N 1-2. 105-114.
  16. Molnárka G., Miletics E. Implicit extension of Taylor series method with numerical derivatives for initial value problems // Computers &; Mathematics with Applications. 2005. 50, N 7. 1167-1177.
  17. Nedialkov N.S., Jackson K.R., Corliss G.F. Validated solutions of initial value problems for ordinary differential equations // Appl. Math. Comput. 1999. 105. 21-68.
  18. Hoefkens J., Berz M., Makino K. Computing validated solutions of implicit differential Equations // Adv. Comput. Math. 2003. 19. 231-253.
  19. Chang Y.F., Corliss G. ATOMFT: solving ODEs and DAEs using Taylor series // Comput. Math. Appl. 1994. 28, N 10-12. 209-233.
  20. Berz M. Cosy infinity version 8 reference manual. Technical Report MSUCL-1088. National Superconducting Cyclotron Lab., Michigan State University, East Lansing. Mich., 2003.
  21. Makino K., Berz M. Taylor models and other validated functional inclusion methods // Int. J. Pure Appl. Math. 2003. 6, N 3. 239-316.
  22. Jorba A., Zou M. A software package for the numerical integration of ODEs by means of high-order Taylor methods // Exp. Math. 2005. 14, N 1. 99-117.
  23. Nedialkov N.S., Pryce J.D. Solving differential-algebraic equations by Taylor series. I. Computing Taylor coefficients // BIT. 2005. 45, N 3. 561-591.
  24. Nedialkov N.S., Pryce J.D. Solving differential-algebraic equations by Taylor series. II. Computing the system Jacobian // BIT. 2007. 47, N 1. 121-135.
  25. Nedialkov N.S., Pryce J.D. Solving differential algebraic equations by Taylor series. III. The DAETS code // J. Numer. Anal. Ind. Appl. Math. 2008. 3, N 1-2. 61-80.
  26. TIDES webpage URL: gme.unizar.es/software/tides.
  27. Hairer E. webpage URL: www.unige.ch/ extasciitilde hairer/.
  28. Hairer E., Wanner G., Norsett S.P. Solving ordinary differential equations: nonstiff problems. Berlin: Springer, 2009.
  29. Babadzanjanz L.K. webpage URL: www.apmath.spbu.ru/ru/staff/babadzhanyants/.
  30. Арушанян О.Б., Залеткин С.Ф. Численное решение обыкновенных дифференциальных уравнений на Фортране. М.: Изд-во Моск. ун-та, 1990.
  31. Wolfram Mathematica webpage URL: www.reference.wolfram.com/mathematica/guide/Mathematica.html.
  32. Babadzhanjanz L.K., Sarkissian D.R. Taylor series method for dynamic systems with control: convergence and error estimates // J. Math. Sci. 2006. 139, N 6. 7025-7046.
  33. Абалакин В.К., Аксенов Е.П., Гребеников Е.А., Демин В.Г., Рябов Ю.А. Справочное руководство по небесной механике и астродинамике. М.: Наука, 1976.
  34. Oesterwinter C., Cohen C.J. New orbital elements for Moon and planets // Celestial Mech. 1972. 5, N 3. 317-395.
  35. NASA Jet Propulsion Laboratory URL: ssd.jpl.nasa.gov/?constants.