Solving the Buckley-Leverett equation with a random coefficient of porosity


  • A.V. Isaeva
  • M.L. Serdobolskaya


Buckley-Leverett equation
hybrid difference schemes


The Buckley-Leverett equation with a random coefficient of porosity is considered. In order to analyze the equation, a combination of analytical (the method of characteristics) and numerical (upwind and hybrid difference schemes) approaches is used. An explicit expression for the stochastic characteristics of the Buckley-Leverett equation is obtained. The statistical parameters of breakthrough time are considered. A comparison between the analytical estimates and the numerical results is discussed.





Section 1. Numerical methods and applications

Author Biographies

A.V. Isaeva

M.L. Serdobolskaya


  1. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. M.: Недра, 1984.
  2. Trangenstein J.A. Numerical solution of hyperbolic partial differential equations. Cambridge: Cambridge Univ. Press, 2007.
  3. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. 1. М.: Мир, 1990.
  4. Петров И.Б., Лобанов А.И. Лекции по вычислительной математике. М.: БИНОМ, 2006.
  5. LeVeque R.J. Finite-volume methods for hyperbolic problems. Cambridge: Cambridge Univ. Press, 2004.
  6. Zhang D., Tchelepi H. Stochastic analysis of immiscible two-phase flow in heterogeneous media // SPE Journal. 1999. 4, N 4. 380-388.
  7. Li H., Zhang D. Efficient and accurate quantification of uncertainty for multiphase flow with the probabilistic collocation method // SPE Journal. 2009. 14, N 4. 665-679.
  8. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
  9. Amyx A., Bass D., Whiting R. Petroleum reservoir engineering. New York: McGraw-Hill, 1960.
  10. Deutsch C.V. Geostatistical reservoir modeling. Oxford: Oxford Univ. Press, 2002.