Implementation of the lattice Boltzmann method on GPU clusters

Authors

  • D.A. Bikulov Introvision
  • D.S. Senin Introvision
  • D.S. Demin Introvision
  • A.V. Dmitriev Introvision
  • N.E. Grachev Introvision

Keywords:

lattice boltzmann method, CUDA, GPU, high performance computing

Abstract

An implementation of the lattice Boltzmann method for the model D3Q19 on GPU clusters in the framework of the NVIDIA CUDA technology is considered. The scalability of this implementation for the Lomonosov MSU supercomputer complex is estimated. The numerical results obtained for the steady Poiseuille flow in a tube and for evaluating the drag coefficient of a sphere are in good agreement with the corresponding analytical dependencies.

Author Biographies

D.A. Bikulov

Introvision, LLC
• Programmer

D.S. Senin

Introvision, LLC
• Technical Director

D.S. Demin

Introvision, LLC
• Senior Analyst

A.V. Dmitriev

Introvision, LLC
• Director of Development

N.E. Grachev

Introvision, LLC

References

  1. Кривовичев Г.В. О применении интегро-интерполяционного метода к построению одношаговых решеточных кинетических схем Больцмана // Вычислительные методы и программирование. 2012. 13, № 1. 19-27.
  2. Куперштох А.Л. Трехмерное моделирование двухфазных систем типа жидкость-пар методом решеточных уравнений Больцмана на GPU // Вычислительные методы и программирование. 2012. 13, № 1. 130-138.
  3. Bhatnagar P.L., Gross E.P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems // Phys. Rev. 1954. N 94. 511-525.
  4. Boyd J., Buick J., Cosgrove J.A., Stansell P. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery // Phys. in Medicine and Biology. 2005. N 50. 4783-4796.
  5. Boyd J., Buick J., Green S. A second-order accurate lattice Boltzmann non-Newtonian flow model // J. Phys. A: Mathematical and General. 2006. N 39. 14241-14247.
  6. Chen S., Martinez D., Mei R. On boundary conditions in lattice Boltzmann methods // Phys. of Fluids. 1996. 8, N 9. 2527-2536.
  7. Hecht M., Harting J.J. Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations // J. of Statistical Mechanics: Theory and Experiment. 2009. N 1. P01018.
  8. Jacobsen D.A., Thibault J.C., Senocak I. An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters // Proc. 48th AIAA Aerospace Sciences Meeting. Reston: American Institute of Aeronautics and Astronautics. 2010. 1-15.
  9. Jiang Z., Wu K., Couples G.D., Ma J. The impact of pore size and pore connectivity on single-phase fluid flow in porous media // Advanced Engineering Materials. 2011. N 13. 208-215.
  10. Kang Q., Zhang D., Lichtner P., Tsimpanogiannis I. Lattice Boltzmann model for crystal growth from supersaturated solution // Geophysical Research Letters. 2004. N 31. L21604.
  11. Köstler H. Numerical algorithms on multi-GPU architectures // Proc. 2nd Int. Workshops on Advances in Computational Mechanics. Yokohama, 2010. 1-47.
  12. Kutay M.E., Aydilek A.H., Masad E. Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials // Computers and Geotechnics. 2006. N 33. 381-395.
  13. Lim C.Y., Shu C., Niu X.D., Chew Y.T. Application of lattice Boltzmann method to simulate microchannel flows // Physics of Fluids. 2002. N 7. 2299-2308.
  14. Narvaez A., Harting J. Evaluation of pressure boundary conditions for permeability calculations using the lattice-Boltzmann method // Advances in Applied Mathematics and Mechanics. 2010. 2, N 5. 685-700.
  15. Obrecht C., Kuznik F., Tourancheau B., Roux J.-J. Multi-GPU implementation of the lattice Boltzmann method // Computers and Mathematics with Applications. 2011
    doi 10.1016/j.canwa.2011.02.020
  16. Obrecht C., Kuznik F., Roux J.-J. The TheLMA project: multi-GPU implementation of the lattice Boltzmann method // Int. J. of High Performance Computing Applications. 2011. N 3. 295-303.
  17. Qian Y.H., D’Humieres D., Lalleman P. Lattice BGK models for Navier-Stokes Equation // Europhysics Letters. 1992. 17, N 6. 479-484.
  18. Sukop M.C., Thorne D.T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Berlin: Springer, 2007.
  19. Tolke J. Implementation of a lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA // Computing and Visualization in Science. 2010. 13, N 1. 29-39.
  20. Raabe D. Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering // Modelling Simul. Mater. Sci. Eng. 2004. N 12. R14-R45.
  21. Xian W., Takayuki A. Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster // Parallel Computing. 2011. 37, N 9. 521-535.
  22. Welleina G., Lammers P., Hagera G., Donatha S., Zeisera T. Towards optimal performance for lattice Boltzmann applications on terascale computers // Proc. Parallel CFD Conference. Amsterdam: Elsevier, 2006. 31-40.
  23. Ye Z. Lattice Boltzmann based PDE solver on the GPU // Visual Comput. 2008. 24, N 5. 323-333.
  24. Zou Q., He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model // Phys. of Fluids. 1997. 9, N 6. 1591-1599.

Published

19-03-2012

How to Cite

Бикулов Д., Сенин Д., Демин Д., Дмитриев А., Грачев Н. Implementation of the Lattice Boltzmann Method on GPU Clusters // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2012. 13. 13-19

Issue

Section

Section 2. Programming