Ab initio molecular dynamics: application perspectives of multi-CPU and hybrid supercomputers

Authors

  • P.A. Zhilyaev
  • V.V. Stegailov

Keywords:

ab initio calculations
molecular dynamics
parallel computing
supercomputers
conductivity

Abstract

A review is presented for the parallelization techniques of the ab initio molecular dynamics based on the electron density functional theory in the plane-wave basis. The requirements for the balance between the computational power of nodes and the supercomputer interconnect are analyzed from the standpoint of maximum efficiency for the computationally demanding problems of warm dense matter physics. An alternative approach is described for parallelizing in the wavelet basis and the advantages of hybrid supercomputers in this case. This work was supported by Russian Foundation for Basic Research (project 11-01-12131-ofi-m-2011).


Published

2012-04-05

Issue

Section

Section 2. Programming

Author Biographies

P.A. Zhilyaev

V.V. Stegailov


References

  1. Янилкин А.В., Жиляев П.А., Куксин А.Ю. и др. Применение суперкомпьютеров для молекулярно-динамического моделирования процессов в конденсированных средах // Вычислительные методы и программирование. 2010. 11, № 1. 115-120.
  2. Van Duin A.C. T. et al. ReaxFF: A Reactive Force Field for hydrocarbons // J. Phys. Chem. A. 2001. 105. 9396-9409.
  3. Smirnova D.E., Starikov S.V., Stegailov V.V. Interatomic potential for uranium in a wide range of pressures and temperatures // J. Phys.: Cond. Mat. 2012. 24. 015702.
  4. Laikov D.N., Ustynyuk Yu.A. PRIRODA-04: a quantum chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing // Russian Chemical Bulletin (International Edition). 2005. 54, N 3. 820-826.
  5. Granovsky A.A. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory // J. Chem. Phys. 2011. 134. 214113.
  6. Hutter J., Curioni A. Car-Parrinello molecular dynamics on massively parallel computers // Chem. Phys. Chem. 2005. 6. 1788-1793.
  7. Gonze X. et al. ABINIT: First-principles approach to material and nanosystem properties // Computer Physics Communications. 2009. 180. 2582-2615.
  8. Gygi F. et al. Practical algorithms to facilitate large-scale first-principles molecular dynamics // J. Phys.: Conf. Ser. 2009. 180. 012074.
  9. Goedecker S. et al. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes // Computer Physics Communications. 2003. 154. 105-110.
  10. Bottin F. et al. Large-scale ab initio calculations based on three levels of parallelization // Computational Material Science. 2008. 42. 329-336.
  11. Gusso M. Study on the maximum accuracy of the pseudopotential density functional method with localized atomic orbitals versus plane-wave basis sets // J. Chem. Phys. 2008. 128. 044102.
  12. Lippert G., Hutter J., Parrinello M. A hybrid Gaussian and plane wave density functional scheme // Mol. Phys. 1997. 92. 477-487.
  13. Стариков С.В., Стегайлов В.В., Норман Г.Э., Фортов В.Е. и др. Лазерная абляция золота: эксперимент и атомистическое моделирование // Письма в ЖЭТФ. 2011. 93. 719-725.
  14. Иногамов Н.А., Петров Ю.В. Теплопроводность металлов с горячими электронами // ЖЭТФ. 2010. 137, № 3. 505-529.
  15. Genovese L. et al. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures // J. Chem. Phys. 2009. 131. 034103.