Supercomputer simulation of plasma electron dynamics in a magnetic trap with inverse magnetic mirrors and multipole magnetic walls

Authors

  • E.A. Berendeev Institute of Computational Technologies of SB RAS (ICT SB RAS) https://orcid.org/0000-0002-2747-7162
  • A.V. Snytnikov The Institute of Computational Mathematics and Mathematical Geophysics of SB RAS (ICM&MG SB RAS)
  • E.A. Berendeev Budker Institute of Nuclear Physics of SB RAS (BINP SB RAS)
  • G.G. Lazareva The Institute of Computational Mathematics and Mathematical Geophysics of SB RAS (ICM&MG SB RAS)

Keywords:

particle-in-cell method, parallel programming, simulation of physical processes, plasma physics

Abstract

The problem of simulation of plasma electron dynamics in a magnetic trap with inverse magnetic mirrors and multipole magnetic walls is considered. The model is proposed on the basis of the particle-in-cell method. The complexity of the processes under study and a required high accuracy of results necessitate the development of a highly scalable computational algorithm. The algorithm must be capable of computing billions of particle trajectories in reasonable time. In order to achieve a uniform and complete workload of computational nodes of a supercomputer, the mixed Eulerian-Lagrangian decomposition is used. A dynamical timestep is taken into account. This approach results in a high scalability and in a significant decrease of computational time. This work was supported by SB RAS integration project number 105 and by the Russian Foundation for Basic Research (projects nos. 11–01–00178, 11–01–00249, and 12–07–00065). This paper was recommended for publishing by the Program Committee of the International Conference on Parallel Computing Technologies (PCT-2013; http://agora.guru.ru/pavt).

Author Biographies

E.A. Berendeev

A.V. Snytnikov

E.A. Berendeev

G.G. Lazareva

References

  1. Dimov G.I. Feasible scenario of startup and burnup of fusion plasma in ambipolar D-T reactor // Transactions of Fusion Science and Technology 2011. 59, N 1T. 208-210.
  2. Власов А.А. Теория многих частиц. М.-Л.: ГИТТЛ, 1950.
  3. Березин Ю.А., Вшивков В.А. Метод частиц в динамике разреженной плазмы. Новосибирск: Наука, 1980.
  4. Берендеев Е.А., Ефимова А.А. Реализация эффективных параллельных вычислений при моделировании больших задач физики плазмы методом частиц в ячейках // Труды Международной научной конференции «Параллельные вычислительные технологии» (ПаВТ-2012). Новосибирск, 2012. 380-385.
  5. Birdsall C.K. Particle-in-cell charged-particle simulation plus Monte Carlo collisions with neutral atoms, PIC-MCC // IEEE Trans. Plasma Sci. 1991. 19, N 2. 65-83.
  6. Boris J.P. Relativistic plasma simulation - optimization of a hybrid code // Proc. Fourth Conference on Numerical Simulation of Plasmas. Washington: Naval Research Lab., 1970. 3-67.
  7. Villasenor J., Buneman O. Rigorous charge conservation for local electromagnetic field solver // Computer Phys. Comm. 1992. 69. 306-316.
  8. Langdon A.B., Lasinski B.F. Electromagnetic and relativistic plasma simulation models // Meth. Comput. Phys. 1976. 16. 327-366.
  9. Вшивков В.А., Лазарева Г.Г., Снытников А.В. Адаптивное изменение массы модельных частиц при моделировании тлеющего ВЧ-разряда в силановой плазме // Вычислительные технологии. 2008. 13, № 1. 22-30.
  10. Андрианов А.Н., Ефимкин К.Н. Подход к параллельной реализации метода частиц в ячейках. Препринт ИПМ им. М.В. Келдыша РАН № 9. Москва, 2009.

Published

12-03-2013

How to Cite

Берендеев Е.А., Снытников А.В., Иванов А.В., Лазарева Г.Г. Supercomputer Simulation of Plasma Electron Dynamics in a Magnetic Trap With Inverse Magnetic Mirrors and Multipole Magnetic Walls // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2013. 14. 149-154

Issue

Section

Section 1. Numerical methods and applications