Numerical modeling of meter-size solid dynamics in high density solitary areas of a massive circumstellar disc


  • O.P. Stoyanovskaya
  • V.N. Snytnikov


self-gravitating circumstellar disc
structure formation
solitary clump


The planetary system formation can proceed via the development of global gravitational instability in a massive circumstellar disc. At this stage, the disc can be considered as a multi-phase medium of gas and primary solids mainly of meter in size. Large solitary vortices of high gaseous density can be formed in such a disc. It is shown that the numerical model based on SPH and PIC methods allows one to study the dynamics of solids in gaseous vortices forming in the disc, including the regimes when the concentration of solids is locally increased. The influence of numerical resolution on the solids thermalization time reproduced in the model is estimated.





Section 1. Numerical methods and applications

Author Biographies

O.P. Stoyanovskaya

V.N. Snytnikov


  1. Barge P., Jorda L. Instabilities and Structures in Proto-Planetary Disks // EPJ Web of Conferences. 2013. 46
    doi 10.1051/epjconf/20134600001
  2. Barge P., Sommeria J. Did planet formation begin inside persistent gaseous vortices? // Astronomy and Astrophysics. 1995. 295. L1-4.
  3. Barranco J.A., Marcus P.S. Three-dimensional vortices in stratified protoplanetary disks // The Astrophysical Journal. 2005. 623, N 2. 1157-1170.
  4. Bate M.R., Burkert A. Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity // Mon. Not. R. Astron. Soc. 1997. 288. 1060-1072.
  5. Bate M.R., Bonnell I.A., Price N.M. Modelling Accretion in Protobinary Systems // Mon. Not. R. Astron. Soc. 1995. 277. 362-376.
  6. Galvagni M., Hayfield T., Boley A.C., Mayer L., Roscar R.,Saha P. The collapse of protoplanetary clumps formed through disc instability: 3D simulations of the pre-dissociation phase // Mon. Not. R. Astron. Soc. 2012. 472, N 2. 1725-1740.
  7. Johansen A., Andersen A.C., Brandenburg A. Simulations of dust-trapping vortices in protoplanetary discs // Astronomy and Astrophysics. 2004. 417, N 1. 361-374.
  8. Hubber D.A., Walch S., Whitworth A.P. An improved sink particle algorithm for SPH simulations // Mon. Not. R. Astron. Soc. 2013. In press (arXiv:1301.4520).
  9. Lodato G., Clarke C. Resolution requirements of smoothed particle hydrodynamics simulations of self-gravitating accretion discs // Mon. Not. R. Astron. Soc. 2011. 413. 27-35.
  10. Lesur G., Papaloizou J.C. B. On the stability of elliptical vortices in accretion discs // Astronomy and Astrophysics. 2009. 498, N 1. 1-12.
  11. Rice W.K. M, Lodato G., Pringle J.E., Armitage P.J., Bonnell I.A. Planetesimal formation via fragmentation in self-gravitating protoplanetary discs // Mon. Not. R. Astron. Soc. 2006. 372. 9-13.
  12. Stoyanovskaya O.P., Snytnikov V.N. Clump formation due to the gravitational instability of a multiphase medium in a massive protoplanetary disc // Mon. Not. R. Astron. Soc. 2013. 428. 2-12.
  13. Stoyanovskaya O.P., Snytnikov V.N. Boulders dynamics and gas flow in self-gravitating high-density areas of massive circumstellar discs // Mon. Not. R. Astron. Soc. submitted.
  14. Youdin A.N., Goodman J. Streaming Instabilities in Protoplanetary Disks // Astrophys. J. 2005. 620. 459-469.
  15. Маркелова Т.В., Снытников В.Н. Моделирование процесса планетообразования в околозвездных дисках // Вычислительные методы и программирование. 2012. 13. 443-451.
  16. Поляченко В.Л., Фридман A.M. Равновесие и устойчивость гравитирующих систем. М.: Наука, 1976.
  17. Стояновская О.П., Снытников В.Н. Особенности SPH-метода решения газодинамических уравнений для моделирования нелинейных волн в двухфазной гравитирующей среде // Математическое моделирование. 2010. 22, № 5. 29-44.
  18. Стояновская О.П., Снытников В.Н. Численное моделирование