Three-dimensional simulation of the dynamics of deformable droplets of an emulsion using the boundary element method and the fast multipole method on heterogeneous computing systems

Authors

  • O.A. Abramova
  • Yu.A. Itkulova
  • N.A. Gumerov
  • I.Sh. Akhatov

Keywords:

deformable droplets
Stokes equations
boundary element method
fast multipole method
parallel computing
graphics processors

Abstract

The direct simulation of the interaction between a large number of deformable droplets is necessary for a more accurate prediction of the rheological properties and the microstructure of the liquid-liquid systems. The mathematical model for a three-dimensional flow of a mixture of two Newtonian liquids with a droplet structure in an unbounded domain is considered at low Reynolds numbers. An efficient approach to simulate the dynamics of a large number of deformable droplets is proposed. This approach is based on the boundary element method for three-dimensional problems accelerated both via an advanced scalable algorithm FMM and via the utilization of heterogeneous computing architectures (multicore CPUs and graphics processors). This enables the direct simulations of systems consisting of tens of thousands of deformable droplets on PCs, which is confirmed by test and demo computations. The developed method can be used to solve a wide range of problems related to the emulsion flow in micro- and nanoscales.


Published

2013-10-23

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

O.A. Abramova

Bashkir State University
• Research Intern

Yu.A. Itkulova

Bashkir State University
• Research Intern

N.A. Gumerov

University of Maryland, Baltimore,
Институт передовых компьютерных исследований (UMIACS), 620 W. Lexington St., Baltimore, MD 2120, USA
• Professor

I.Sh. Akhatov


References

  1. Bayareh M., Mortazavi S. Three-dimensional numerical simulation of drops suspended in simple shear flow at finite Reynolds numbers // J. Multiphase Flow. 2011. 37. 1315-1330.
  2. Biros G., Ying L., Zorin D. A fast solver for the Stokes equations with distributed forces in complex geometries // J. Comp. Phys. 2003. 193. 317-348.
  3. Greengard L., Rokhlin V. A fast algorithm for particle simulations // J. Comp. Phys. 1987. 73. 325-348.
  4. Gumerov N.A., Duraiswami R. Fast multipole methods on graphics processors // J. Comput. Phys. 2008. 227, N 18. 8290-8313.
  5. Gumerov N.A., Duraiswami R. Fast multipole methods for the Helmholtz equation in three dimensions. Oxford: Elsevier, 2005.
  6. Hu Q., Gumerov N.A., Duraiswami R. Scalable fast multipole methods on distributed heterogeneous architectures // Proc. of International Conference on High Performance Computing. Article N 36. New York: ACM Press, 2011.
  7. Hu Q., Gumerov N.A., Duraiswami R. Scalable distributed fast multipole methods // Proc. 14th International Conference on High Performance Computing and Communications. New York: IEEE Press, 2012. 270-279.
  8. Kennedy M.R., Pozrikidis C., Skalak R. Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow // Computers and Fluids. 1994. 23, N 2. 251-278.
  9. Loewenberg M., Hinch E.J. Numerical simulation of a concentrated emulsion in shear flow // J. Fluid Mech. 1996. 321. 395-419.
  10. Nourbakhsh A., Mortazavi S. The lateral migration of a drop under gravity between two parallel plates at finite Reynolds numbers // J. Applied Fluid Mech. 2012. 5, N 1. 11-21.
  11. Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow. Cambridge: Cambridge Univ. Press, 1992.
  12. Rahimian A., Lashuk I., Veerapaneni S.K., Chandramowlishwaran A., Malhotra D., Moon L., Sampath R., Shringarpure A., Vetter J., Vuduc R., Zorin D., Biros G. Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures // Proc. Supercomputing’10. New Orleans, 2010. 1-11.
  13. Rallison J.M., Acrivos A. A numerical study of the deformation and burst of a viscous drop in an extensional flow // J. Fluid Mech. 1978. 89, N 1. 91-200.
  14. Saad Y. Iterative methods for sparse linear system. Philadelphia: SIAM, 2000.
  15. Sangani A.S., Mo G. An O(N) algorithm for Stokes and Laplace interactions of particles // Phys. Fluids. 1996. 8, N 8. 1990-2010.
  16. Tornberg A.K., Greengard L. A fast multipole method for the three-dimensional Stokes equations // J. Comput. Phys. 2008. 227, N 3. 1613-1619.
  17. Wang H., Lei T., Li J., Huang J., Yao Z. A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations // Int. J. Num. Meth. Engng. 2007. 70. 812-839.
  18. Ying L., Biros G., Zorin D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions // J. Comp. Phys. 2004. 196. 591-626.
  19. Zhao H., Isfahani A.H. G., Olson L.N., Freund J.B. A spectral boundary integral method for flowing blood cells // J. Comp. Phys. 2010. 229. 3726-3744.
  20. Zinchenko A.Z., Rother M.A., Davis R.H. A novel boundary-integral algorithm for viscous interaction of deformable drops // Phys. Fluids. 1997. 9, N 6. 1493-1511.
  21. Zinchenko A.Z., Davis R.H. Large-scale simulations of concentrated emulsion flows // Phil. Trans. R. Soc. Lond. A. 2003. 361. 813-845.
  22. Zinchenko A.Z., Davis R.H. A multipole-accelerated algorithm for close interaction of slightly deformable drops // J. Comp. Phys. 2005. 207. 695-735.
  23. Абрамова О.А., Иткулова Ю.А., Гумеров Н.А. Моделирование трехмерного движения деформируемых капель в стоксовом режиме методом граничных элементов // Вычисл. мех. сплош. сред. 2013. 6, № 2. 214-223.
  24. Солнышкина О.А., Иткулова Ю.А., Гумеров Н.А. Ускорение расчетов на графических процессорах при исследовании течения Стокса методом граничных элементов // Вестник Уфимского гос. авиационного техн. ун-та. 2013. 17, № 2 (55). 92-100.