Computation of two-dimensional flows using multilevel meshes


  • D.A. Gubaidullin
  • P.P. Osipov


irregular grids
Riemann invariants
AMR (Automated Mesh Refinement)


For two-dimensional problems of perfect gas dynamics, a special form of equations consisting of conservation laws for directed invariants is proposed. Based on these equations, a number of schemes for computing gas flows using multilevel meshes are developed. These schemes use the time-multilevel refinement for the rate of change in the invariants which allows one to substantially reduce computational cost. An additional advantage of these schemes is the fact that an appropriate choice of the directions of the invariants allows one to prevent the distortions of the solution dependent on the orientation of coordinate axes.





Section 1. Numerical methods and applications

Author Biographies

D.A. Gubaidullin

Institute of Mechanics and Engineering - Subdivision of «Kazan Scientific Center of RAS»
2/31, Lobachevsky str., Kazan, 420111, Russia
• Director

P.P. Osipov

Institute of Mechanics and Engineering - Subdivision of «Kazan Scientific Center of RAS»
2/31, Lobachevsky str., Kazan, 420111, Russia
• Leading Researcher


  1. Sod G. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws // J. Comput. Phys. 1978. 27. 1-31.
  2. Guinor V. High resolution Godunov-type schemes with small stencils // Int. J. Numer. Meth. Fluids. 2004. 44. 1119-1162.
  3. Colella P., Graves D., Keen B., Modiano D. A Cartesian grid embedded boundary method for hyperbolic conservation laws // J. Comput. Phys. 2006. 211. 347-366.
  4. Veress A., Santa I. A 2D mathematical model on transonic axial compressor rotor flow // Periodica Polytechnica Ser. Transp. Eng. 2002. 30, N 1/2. 53-67.
  5. Steger J.L., Warming R.F. Flux vector splitting of the inviscid gas-dynamic equations with applications to finite difference methods // J. Comput. Phys. 1981. 40. 263-293.
  6. Jiang G.S., Tadmor E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws // SIAM J. Sci. Comput. 1998. 19, N 6. 1892-1917.
  7. Roe P.L. Characteristic-based schemes for the Euler equations // Ann. Rev. Fluid Mech. 1986. 18. 337-365.
  8. Simpson R.B. Automatic local refinement for irregular rectangular meshes // Int. J. Num. Meth. Eng. 1979. 14. 1665-1678.
  9. Berger M.J., Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations // J. Comput. Phys. 1984. 53. 484-512.
  10. Berger M.J., Colella P. Local adaptive mesh refinement for shock hydrodynamics // J. Comput. Phys. 1989. 82. 64-84.
  11. Yerry M., Shephard M. Automatic three dimensional mesh generation by the modified octtree technique // Int. J. Numer. Methods Eng. 1984. 20. 1965-1990.
  12. Ossipov P. Heuristic algorithm for generating multilevel Cartesian meshes in multidimensional regions with moving boundaries // Appl. Math. and Comput. 2010. 215. 3684-3695.
  13. Осипов П.П. Моделирование аэродинамики жилой группы // Изв. КазГАСУ. 2009. № 12. 70-75.
  14. Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow // J. Comput. Phys. 1994. 114. 114-146.
  15. Arienti M., Hung P., Morano E., Shepherd J.E. A level set approach to Eulerian-Lagrangian coupling // J. Comput. Phys. 2003. 185. 213-251.
  16. Martin F., Colella P., Graves D. A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions // J. Comput. Phys. 2008. 227. 1863-1886.
  17. Nemec M., Aftosmis M., Wintzer M. Adjoint-based adaptive mesh refinement for complex geometries // 46th AIAA Aerospace Sciences Meeting. Reston: American Inst. of Aeronautics and Astronautics, 2008. Paper 2008-0725, 1-23.
  18. Berger M.J., Helzel C., Leveque J. H-box methods for the approximation of hyperbolic conservation laws on irregular grids // SIAM J. Numer. Anal. 1975. 41. 893-918.
  19. Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003.
  20. Ильгамов М.А., Гильманов А.Н. Неотражающие условия на границах расчетной области. М.: Наука, 2003.
  21. Colella P., Woodward P. The piecewise parabolic method (PPM) for gas-dynamical simulations // J. Comput. Phys. 1984. 54. 174-201.
  22. Попов М.В., Устюгов С.Д. Кусочно-параболический метод на локальном шаблоне для задач газовой динамики // Журн. вычислит. матем. и матем. физ. 2007. 47, № 12. 2055-2075.
  23. Colella P. Multidimensional upwind methods for hyperbolic conservation laws // J. Comput. Phys. 1990. 87. 171-200.
  24. Zalesak T. Fully multidimensional flux-corrected transport algorithms for fluids // J. Comput. Phys. 1979. 31. 335-362.
  25. Harten A. Uniformly high order accurate essentially non-oscillatory schemes // J. Comput. Phys. 1987. 71. 231-303.