Minimization of the residual functional in problems of stream experimental data processing



nonlinear integro-differential equations, descent algorithm, regularization, genetic algorithm


We consider the problem of residual functional minimization that arises in the case of long experimental data series processing when the measured process is described by nonlinear integro-differential or integral equations. For the nonlinear inverse problems that deal with functions with continuous first and second derivatives on a compact set, we consider the three main techniques: a descent algorithm, a regularization method, and the search of the optimal solution in the set of all suboptimal solutions. The central part of the new method is the descent algorithm, which works on a multidimensional net constructed on the base of polytope vertices. The regularization of the solution is performed using the Sobolev’s space as a minimization domain. To avoid the ambiguities due to the presence of suboptimal solutions, we apply a special technique that uses the elements of genetic algorithms and allows one to adopt the previously obtained processing results.

Author Biographies

B.G. Shpynev

A.L. Voronov


  1. Bard Y. Nonlinear parameter estimation. New York: Academic Press, 1970.
  2. Chambolle A. An algorithm for total variation minimization and applications // J. of Mathematical Imaging and Vision. 2004. 20. 89-97.
  3. de Boor C. A practical guide to splines. Berlin: Springer, 1978.
  4. Деннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. М.: Мир, 1988.
  5. Goldberg D.E. Genetic algorithms in search, optimization and machine learning. Boston: Addison-Wesley, 1989.
  6. Хемминг Р.В. Численные методы для научных работников и инженеров. М.: Наука, 1979.
  7. Лэм Дж. Введение в теорию солитонов. М.: Мир, 1983.
  8. Fogel L.J. Intelligence through simulated evolution: forty years of evolutionary programming.
  9. Foulkes W.M. C., Mitas L., Needs R.J., Rajagopal G. Quantum Monte Carlo simulations of solids // Reviews of Modern Physics. 2001. 73. 33-83.
  10. Rudin L.I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms // Physica D. 1992. 60. 259-268.
  11. Shpynev B.G. Incoherent scatter Faraday rotation measurements on a radar with single linear polarization // Radio Sci. 2004. 39, N 3. RS3001
    doi 10.1029/2001RS002523
  12. Shpynev B.G., Voronov A.L. Discrete direction method in nonlinear problems of incoherent scattering spectrum fitting // Geomagnetism and Aeronomy. 2010. 50, N 7. 908-913.
  13. Strong D., Chan T. Edge-preserving and scale-dependent properties of total variation regularization // Inverse Problems. 2003. 19. S165-S187.
  14. Swartz W.E. Analytic partial derivatives for least-squares fitting incoherent scatter data // Radio Sci. 1978. 13. 581-589.
  15. Абловиц М., Сигур X. Солитоны и метод обратной задачи. М.: Мир, 1987.
  16. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Киев: Наукова Думка, 1986.
  17. Колмогоров А.Н. Избранные труды. 3. Теория информации и теория алгоритмов. М.: Наука, 2005.
  18. Курант Р. Уравнения с частными производными. М.: Мир, 1964.
  19. Морозов В.А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987.
  20. Саттон Р.С., Барто Э.Г. Обучение с подкреплением. М.: БИНОМ, 2011.
  21. Соболев С.Л. Некоторые применения функционального анализа в математической физике. Л.: Изд-во ЛГУ, 1950.
  22. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
  23. Шеннон К. Работы по теории информации и кибернетике. М.: ИЛ, 1963.



How to Cite

Шпынёв Б., Воронов А. Minimization of the Residual Functional in Problems of Stream Experimental Data Processing // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2013. 14. 503-515



Section 1. Numerical methods and applications