Parallel algorithms of solving the Poisson equation using oblique cross grids in backward-facing step domains
Authors
-
A.M. Ryazanov
-
S.A. Finogenov
Keywords:
gas dynamics
hydrodynamics
Poisson equation
method of fictitious components
parallel computing
MPI
PETSc PDF (in Russian) (147KB) PDF. zip (in Russian) (123KB)
Abstract
In problems of hydrodynamics for incompressible fluid, the procedure of solving the Poisson equation to determine the pressure is a main computing unit. The paper suggests a parallel implementation of the fictitious domain method for the Poisson equation in a three-dimensional backward-facing step domain. This method is based on the parallel realization of a fast algorithm for solving the Poisson equation in a parallelepiped. Some standard methods of solving this equation on the basis of the PETSc package are also considered. A comparative analysis of these two approaches is discussed using the numerical results obtained on a multiprocessor complex named «Lomonosov».
Section
Section 2. Programming
References
- Головизнин В.М., Самарский А.А. Некоторые свойства разностной схемы Кабаре // Математическое моделирование. 1988. 10, № 1. 101-116.
- Головизнин В.М., Карабасов С.А., Кобринский И.М. Балансно-характеристические схемы с разделенными консервативными и потоковыми переменными // Математическое моделирование. 2003. 15, № 9. 29-48.
- Головизнин В.М., Карабасов С.А. Нелинейная коррекция схемы Кабаре // Математическое моделирование. 1998. 10, № 12. 107-123.
- PETSc: Portable, Extensible Toolkit for Scientific computation (http://www.mcs.anl.gov/petsc/petsc-as/).
- Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- Saad Y. Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.
- Кузнецов Ю.А. Численные методы в подпространствах // Вычислительные процессы и системы. 2. М.: Наука, 1985. 265-350.
- Finogenov S.A., Kuznetsov Yu.A. Two-stage fictitious components method for solving the Dirichlet boundary value problem // Sov. J. Numer. Anal. Math. Modelling. 1988. 3, N 4. 301-323.