Simulation of an ideal quantum computer on a supercomputer ’Lomonosov’

Authors

  • O.V. Korzh
  • S.V. Korobkov
  • D.Yu. Andreev
  • A.A. Korzh
  • A.Yu. Chernyavskiy

Keywords:

supercomputer
quantum informatics
Grover’s algorithm
quantum Fourier transform
parallel algorithms PDF (in Russian) (369KB) PDF. zip (in Russian) (316KB)

Abstract

One of the problems whose solution is expected to be available by exaflops supercomputers is to build a computer based on new principles that will provide a significant progress in computing speed. This paper presents a simulation of an ideal quantum computer on a supercomputer «Lomonosov». An efficient algorithm for parallel computations of one-, two- and three-qubit transformations is proposed. This algorithm uses DISLIB. As an example, the quantum Grover algorithm and the quantum Fourier transform are considered.


Published

2013-05-14

Issue

Section

Section 2. Programming

Author Biographies

O.V. Korzh

S.V. Korobkov

D.Yu. Andreev

A.A. Korzh

A.Yu. Chernyavskiy


References

  1. Shor P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer // SIAM J. Comput. 1997. 26, N 5. 1484-1509.
  2. Grover L.K. A fast quantum mechanical algorithm for database search // Proc. of the 28th Annual ACM Symposium on the Theory of Computing. Philadelphia, 1996. 212-219.
  3. Ожигов Ю.И. Квантовые вычисления. М.: Макс Пресс, 2003.
  4. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. M.: Мир, 2006.
  5. Корж А.А. Масштабирование Data-Intensive приложений с помощью библиотеки DISLIB на суперкомпьютерах Blue Gene/P и «Ломоносов» // Тр. конф. «Научный сервис в сети Интернет-2011». М.: Изд-во Моск. ун-та, 2011. 126-131.
  6. Корж А.А. Результаты моделирования бенчмарка NBP UA на тысячи ядер суперкомпьютера BlueGene /P с помощью PGAS-расширения OpenMP // Вычислительные методы и программирование. 2010. 11. 31-41.
  7. Burger J.R. New approaches to quantum computer simulation in a classical supercomputer // Computing Research Repository (CoRR). 2003. Vol. Quant-ph/0308158.
  8. Tabakin F., Juliá-D’iaz B. QCMPI: A parallel environment for quantum computing // Computer Physics Communications. 2009. N 18. 948-964.
  9. Altschul S., Gish W., Miller W., Myers E., Lipman D. Basic local alignment search tool // J. of Molecular Biology. 1990. 215 (3). 403-410.
  10. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. LAPACK Users» Guide (Third Ed.). Philadelphia: SIAM, 1999.
  11. ScaLAPACK (http://www.netlib.org/scalapack/).
  12. Arnold G., Lippert T., Pomplun N., Richter M. Large Scale Simulation of Ideal Quantum Computers on SMP-Clusters // Proc. of the Conf. on Parallel Computing (ParCo). Malaga, 2005. 447-454.
  13. Negovetic G., Perkowski M., Lukac M., Buller A. Evolving quantum circuits and an FPGA-based quantum computing emulator // Int. Workshop on Boolean Problems. Freiberg, 2002. 15-22.
  14. World record: German supercomputer simulates quantum computer (http://phys.org/news189231849.html).