Simulation of an ideal quantum computer on a supercomputer ’Lomonosov’

Authors

  • O.V. Korzh Lomonosov Moscow State University
  • S.V. Korobkov Lomonosov Moscow State University
  • D.Yu. Andreev Dorodnicyn Computing Centre of RAS
  • A.A. Korzh Lomonosov Moscow State University
  • A.Yu. Chernyavskiy Valiev Institute of Physics and Technology of RAS

Keywords:

supercomputer, quantum informatics, Grover’s algorithm, quantum Fourier transform, parallel algorithms PDF (in Russian) (369KB) PDF. zip (in Russian) (316KB)

Abstract

One of the problems whose solution is expected to be available by exaflops supercomputers is to build a computer based on new principles that will provide a significant progress in computing speed. This paper presents a simulation of an ideal quantum computer on a supercomputer «Lomonosov». An efficient algorithm for parallel computations of one-, two- and three-qubit transformations is proposed. This algorithm uses DISLIB. As an example, the quantum Grover algorithm and the quantum Fourier transform are considered.

Author Biographies

O.V. Korzh

S.V. Korobkov

D.Yu. Andreev

A.A. Korzh

A.Yu. Chernyavskiy

References

  1. Shor P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer // SIAM J. Comput. 1997. 26, N 5. 1484-1509.
  2. Grover L.K. A fast quantum mechanical algorithm for database search // Proc. of the 28th Annual ACM Symposium on the Theory of Computing. Philadelphia, 1996. 212-219.
  3. Ожигов Ю.И. Квантовые вычисления. М.: Макс Пресс, 2003.
  4. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. M.: Мир, 2006.
  5. Корж А.А. Масштабирование Data-Intensive приложений с помощью библиотеки DISLIB на суперкомпьютерах Blue Gene/P и «Ломоносов» // Тр. конф. «Научный сервис в сети Интернет-2011». М.: Изд-во Моск. ун-та, 2011. 126-131.
  6. Корж А.А. Результаты моделирования бенчмарка NBP UA на тысячи ядер суперкомпьютера BlueGene /P с помощью PGAS-расширения OpenMP // Вычислительные методы и программирование. 2010. 11. 31-41.
  7. Burger J.R. New approaches to quantum computer simulation in a classical supercomputer // Computing Research Repository (CoRR). 2003. Vol. Quant-ph/0308158.
  8. Tabakin F., Juliá-D’iaz B. QCMPI: A parallel environment for quantum computing // Computer Physics Communications. 2009. N 18. 948-964.
  9. Altschul S., Gish W., Miller W., Myers E., Lipman D. Basic local alignment search tool // J. of Molecular Biology. 1990. 215 (3). 403-410.
  10. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. LAPACK Users» Guide (Third Ed.). Philadelphia: SIAM, 1999.
  11. ScaLAPACK (http://www.netlib.org/scalapack/).
  12. Arnold G., Lippert T., Pomplun N., Richter M. Large Scale Simulation of Ideal Quantum Computers on SMP-Clusters // Proc. of the Conf. on Parallel Computing (ParCo). Malaga, 2005. 447-454.
  13. Negovetic G., Perkowski M., Lukac M., Buller A. Evolving quantum circuits and an FPGA-based quantum computing emulator // Int. Workshop on Boolean Problems. Freiberg, 2002. 15-22.
  14. World record: German supercomputer simulates quantum computer (http://phys.org/news189231849.html).

Published

14-05-2013

How to Cite

Корж О.В., Коробков С.В., Андреев Д.Ю., Корж А.А., Чернявский А.Ю. Simulation of an Ideal Quantum Computer on a Supercomputer ’Lomonosov’ // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2013. 14. 24-34

Issue

Section

Section 2. Programming