An accelerated topology change algorithm for the contour advection method
Authors
-
A.A. Baranov
-
M.S. Permyakov
Keywords:
geophysical hydrodynamics
computational hydrodynamics
contour dynamics
contour advection
contour editing
topology change PDF (in Russian) (378KB) PDF. zip (in Russian) (347KB)
Abstract
The contour advection method is one of the Lagrangian approaches to the simulation of scalar field transport processed in quasi-two-dimensional inviscid incompressible flows considered in numerous applications of geophysical hydrodynamics. In order to conserve the computational efficiency when the tracer field structures become very complex, this method includes a contour editing procedure. This paper analyzes the basic steps of this procedure and proposes an accelerated topology change algorithm to substantially reduce computing cost. This work was supported by the Russian Foundation for Basic Research (project 12–05–31011) and by the Far Eastern Branch of the Russian Academy of Sciences (projects 12–I–P–19–02, N 12–III–A–07–051).
Section
Section 2. Programming
References
- Waugh D.W., Plumb R.A. Contour advection with surgery: a technique for investigating finescale structure in tracer transport // Journal of the Atmospheric Sciences. 1994. 51, N 4. 530-540.
- Dritschel D.G., Ambaum M.H. P. A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields // Quarterly Journal of the Royal Meteorological Society. 1997. 123, N 540. 1097-1130.
- Zabusky N.J., Hughes M.H., Roberts K.V. Contour dynamics for the Euler equations in two dimensions // Journal of Computational Physics. 1979. 30, N 1. 96-106.
- Соколовский М.А., Веррон Ж. Динамика вихревых структур в стратифицированной вращающейся жидкости. М.-Ижевск: Ижевский институт компьютерных исследований, 2011.
- Козлов В.Ф. Метод контурной динамики в модельных задачах о топографическом циклогенезе в океане // Изв. АН СССР. Физика атмосферы и океана. 1983. 19, № 8. 845-854.
- Козлов В.Ф. Метод контурной динамики в океанологических исследованиях: результаты и перспективы // Морской гидрофизический журнал. 1985. № 4. 10-14.
- Dritschel D.G. Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows // Computer Physics Reports. 1989. 10, N 3. 77-146.
- Dritschel D.G. Contour Surgery: A Topological reconnection scheme for extended integrations using contour dynamics // Journal of Computational Physics. 1988. 77, N 1. 240-266.
- Макаров В.Г. Вычислительный алгоритм метода контурной динамики с изменяемой топологией исследуемых областей // Моделирование в механике. 1991. T. 5(22), № 4. 83-95.
- Schaerf T.M., Macaskill C. On contour crossings in contour-advective simulations. Part 1. Algorithm for detection and quantification // Journal of Computational Physics. 2012. 231, N 2. 465-480.
- Schaerf T.M., Macaskill C. On contour crossings in contour-advective simulations. Part 2. Analysis of crossing errors and methods for their prevention // Journal of Computational Physics. 2012. 231, N 2. 481-504.
- Ласло М. Вычислительная геометрия и компьютерная графика на C++. М.: БИНОМ, 1997.
- Мелешко В.В., Краснопольская Т.С. Смешивание вязких жидкостей // Нелинейная динамика. 2005. 1, № 1. 69-109.