A fast numerical method for solving the Smoluchowski-type kinetic equations of aggregation and fragmentation processes

Authors

  • S.A. Matveev
  • E.E. Tyrtyshnikov
  • A.P. Smirnov
  • N.V. Brilliantov

Keywords:

Smoluchowski equation
kinetics equations of aggregation and fragmentation processes
predictor-corrector scheme
cross interpolation method
low-rank matrix approximations
discrete convolution

Abstract

A number of models of aggregation-fragmentation processes on the basis of Smoluchowski-type kinetic equations are considered. A new numerical method for the fast solution of this class of problems is proposed. This method allows one to decrease the computational complexity of a problem without loss of accuracy. The application of the method is illustrated by several examples of problems of aggregation-fragmentation kinetics in the cases of interest in practice.


Published

2014-01-15

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

S.A. Matveev

E.E. Tyrtyshnikov

A.P. Smirnov

N.V. Brilliantov


References

  1. Brilliantov N.V., Bodrova A.S., Krapivsky P.L. A model of ballistic aggregation and fragmentation // J. Stat. Mech. 2009. P06011
    doi 10.1088/1742-5468/2009/06/P06011
  2. Leyvraz F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation // Physics Reports. 2003. 383, N 2/3. 95-212.
  3. Krapivsky P.L., Redner A., Ben-Naim E.A. Kinetic view of statistical physics. Cambridge: Cambridge Univ. Press, 2010.
  4. Cohen F.E., Pan K.M., Huang Z., Baldwin M., Fletterick R.J., Prusiner S.B. Structural clues to prion replication // Science. 1994. 264. 530-531.
  5. Eigen M. Prionics or the kinetic basis of prion diseases // Biophys. Chem. 1996. 63. A1-A18.
  6. Masel J., Jansen V.A. A., Nowak M.A. Quantifying the kinetic parameters of prion replication // Biophys. Chem. 1999. 77. 139-152.
  7. Poeschel T., Brilliantov N.V., Frommel C. Kinetics of prion growth // Biophys. J. 2003. 85. 3460-3474.
  8. Cuzzi J.N. et al. An evolving view of Saturn’s dynamic rings // Science. 2010. 327. 1470-1475.
  9. Esposito L. Planetary rings. Cambridge: Cambridge Univ. Press, 2006.
  10. Brilliantov N., Krapivsky P., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. Particle size distribution in Saturn’s rings: aggregation-fragmentation model // Proc. of the National Academy of Sciences of the United States of America. 2014 (submitted).
  11. Галкин В.А. Уравнение Смолуховского. М.: Физматлит, 2001.
  12. Oseledets I., Tyrtyshnikov E. TT-cross approximation for multidimensional arrays // Linear Algebra and its Applications. 2008. 432, N 1. 70-88.
  13. Kazeev V., Khoromskij B., Tyrtyshnikov E. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity // SIAM J. Sci. Comp. 2013. 35, N 3. A1511-A1536.
  14. Palaniswaamy G., Loyalka S.K. Direct simulation, Monte Carlo, aerosol dynamics: coagulation and collisional sampling // Nuclear Technology. 2006. 156, N 1. 29-38.