A fast numerical method for solving the Smoluchowski-type kinetic equations of aggregation and fragmentation processes
Authors
-
S.A. Matveev
-
E.E. Tyrtyshnikov
-
A.P. Smirnov
-
N.V. Brilliantov
Keywords:
Smoluchowski equation
kinetics equations of aggregation and fragmentation processes
predictor-corrector scheme
cross interpolation method
low-rank matrix approximations
discrete convolution
Abstract
A number of models of aggregation-fragmentation processes on the basis of Smoluchowski-type kinetic equations are considered. A new numerical method for the fast solution of this class of problems is proposed. This method allows one to decrease the computational complexity of a problem without loss of accuracy. The application of the method is illustrated by several examples of problems of aggregation-fragmentation kinetics in the cases of interest in practice.
Section
Section 1. Numerical methods and applications
References
- Brilliantov N.V., Bodrova A.S., Krapivsky P.L. A model of ballistic aggregation and fragmentation // J. Stat. Mech. 2009. P06011
doi 10.1088/1742-5468/2009/06/P06011
- Leyvraz F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation // Physics Reports. 2003. 383, N 2/3. 95-212.
- Krapivsky P.L., Redner A., Ben-Naim E.A. Kinetic view of statistical physics. Cambridge: Cambridge Univ. Press, 2010.
- Cohen F.E., Pan K.M., Huang Z., Baldwin M., Fletterick R.J., Prusiner S.B. Structural clues to prion replication // Science. 1994. 264. 530-531.
- Eigen M. Prionics or the kinetic basis of prion diseases // Biophys. Chem. 1996. 63. A1-A18.
- Masel J., Jansen V.A. A., Nowak M.A. Quantifying the kinetic parameters of prion replication // Biophys. Chem. 1999. 77. 139-152.
- Poeschel T., Brilliantov N.V., Frommel C. Kinetics of prion growth // Biophys. J. 2003. 85. 3460-3474.
- Cuzzi J.N. et al. An evolving view of Saturn’s dynamic rings // Science. 2010. 327. 1470-1475.
- Esposito L. Planetary rings. Cambridge: Cambridge Univ. Press, 2006.
- Brilliantov N., Krapivsky P., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. Particle size distribution in Saturn’s rings: aggregation-fragmentation model // Proc. of the National Academy of Sciences of the United States of America. 2014 (submitted).
- Галкин В.А. Уравнение Смолуховского. М.: Физматлит, 2001.
- Oseledets I., Tyrtyshnikov E. TT-cross approximation for multidimensional arrays // Linear Algebra and its Applications. 2008. 432, N 1. 70-88.
- Kazeev V., Khoromskij B., Tyrtyshnikov E. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity // SIAM J. Sci. Comp. 2013. 35, N 3. A1511-A1536.
- Palaniswaamy G., Loyalka S.K. Direct simulation, Monte Carlo, aerosol dynamics: coagulation and collisional sampling // Nuclear Technology. 2006. 156, N 1. 29-38.