Application of the multicharge approximation for large dense matrices in the framework of the polarized continuum solvent model

Authors

Keywords:

implicit solvent model, polarized charges, triangulation network, molecular surface, Solvent Excluded Surface (SES), solvation energy, desolvation energy, protein-ligand binding energy, solvent, multicharge method

Abstract

The polar part of the molecular interaction energy with a water solvent and its computation are considered in the frame of the PCM continuum implicit solvent model (Polarized Continuum Model). A new algorithm of solving the polarized charge equation is proposed. This algorithm is more than two orders of magnitude faster than the regular iterative methods without any critical loss of accuracy. The algorithm is based on the multicharge method for approximating large dense matrices generated by discretizing the molecular Solvent Excluded Surface (SES) and the polarized charges on it. The algorithm is implemented in the MCBHSOLV program written on the Python programming language. Numerical results obtained with the MCBHSOLV program and its performance are compared with those of the DISOLV program. The comparison is based on computing the polar part of the solvation energy of different proteins, ligands, and protein-ligand complexes as well as on computing the desolvation energy being an important part of the protein-ligand interaction energy. Both the programs used the same test data: molecules, surfaces, discretizations, and atomic charges. The influence of the discretization step size on the molecule solvation and desolvation energies is examined. It is shown that the computations of the desolvation energy with an error less than 1 kcal/mol can be performed with a discretization step of 0.2 A, which requires only several minutes per one set of protein, ligand, and protein-ligand complexes.

Author Biographies

A.Yu. Mikhalev

I.V. Oferkin

Dimonta, LLC
• Programmer

I.V. Oseledets

A.V. Sulimov

Dimonta, LLC
• Head of Laboratory

E.E. Tyrtyshnikov

V.B. Sulimov

References

  1. Садовничий В.А., Сулимов В.Б. Суперкомпьютерные технологии в медицине // Суперкомпьютерные технологии в науке, образовании и промышленности / Под ред. Вл.В. Воеводина, В.А. Садовничего, Г.И. Савина. М.: Изд-во Моск. гос. ун-та, 2009. 16-23.
  2. Романов А.Н., Кондакова О.А., Григорьев Ф.В., Сулимов A.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б. Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. 9. 213-233.
  3. Офёркин И.В., Сулимов А.В., Кондакова О.А., Сулимов В.Б. Реализация поддержки параллельных вычислений в программах докинга SOLGRID и SOL // Вычислительные методы и программирование. 2011. 12. 9-23.
  4. Sulimov A.V., Kutov D.C., Oferkin I.V., Katkova E.V., Sulimov V.B. Application of the docking program SOL for CSAR benchmark //
  5. Tomasi J., Persico M. Molecular interactions in solution: an overview of method based on continuous distributions of the solvent //
  6. Cramer C., Truhlar D. Implicit solvation models: equilibria, structure, spectra, and dynamics //
  7. Onufriev A. Continuum electrostatics solvent modeling with the generalized Born model // Modeling Solvent Environments: Applications to Simulations of Biomolecules. Weinheim: Wiley, 2010. 127-166.
  8. Bordner A.J., Cavasotto C.N., Abagyan R.A. Accurate transferable model for water, n-Octanol, and n-Hexadecane solvation free energies //
  9. Купервассер О.Ю., Жабин С.Н., Мартынов Я.Б., Федулов К.М., Офёркин И.В., Сулимов А.В., Сулимов В.Б. Континуальная модель растворителя: программа DISOLV - алгоритмы, реализация и валидация // Вычислительные методы и программирование. 2011. 12. 246-261.
  10. Pomelli C.S., Tomasi J. A new formulation of the PCM solvation method: PCM-QINTn //
  11. Mikhalev A.Yu., Oseledets I.V. Adaptive nested cross approximation of non-local operators (arXiv preprint: 1309.1773). 2013 (URL: http://arxiv.org/abs/1309.1773).
  12. Totrov M., Abagyan R. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide // Peptide Science. 2001. 60, N 2. 124-133.
  13. Жабин С.Н., Сулимов В.Б. Свидетельство № 2006613753 о государственной регистрации программ для ЭВМ. Зарегистрировано в реестре программ для ЭВМ Федеральной службы по интеллектуальной собственности, патентам и товарным знакам 27 октября 2006.
  14. Жабин С.Н., Сулимов В.Б. Программа построения доступной растворителю поверхности для произвольных органических молекул и интерактивный просмотр положений лигандов в активных центрах белков // Сб. материалов XIII Российского национального конгресса «Человек и лекарство». 3-7 апреля 2006. М., 2006. 15.
  15. Жабин С.Н., Сулимов В.Б. Построение гладких молекулярных поверхностей с адаптивной триангуляцией: программа TAGSS // Научная визуализация. 2011. 3, № 2. 27-53.
  16. Connoly M.L. Solvent-accessible surfaces of proteins and nucleic acids // Science. 1983. 221, N 4612. 709-713.
  17. Vorobjev Y.N., Hermans J. SIMS: computation of a smooth invariant molecular surface // Biophys. J. 1997. 73. 722-732.
  18. Самарский А.А. Введение в численные методы. СПб.: Лань, 2005.
  19. Hackbusch W., Khoromskij B.N., Sauter S.A. On mathcalH^2-matrices // Lectures on Applied Mathematics. Heidelberg: Springer, 2000. 2-29.
  20. Börm S. Efficient numerical methods for non-local operators: mathcalH^2-matrix compression, algorithms and analysis. Zürich: Eur. Math. Soc., 2010.
  21. Voevodin V.V. On a method of reducing the matrix order while solving integral equations //Numerical Analysis on FORTRAN. Moscow: Moscow Univ. Press, 1979. 21-26.
  22. Greengard L., Rokhlin V. A fast algorithm for particle simulations // J. Comput. Phys. 1987. 73, N 2. 325-348.
  23. Ying L., Biros G., Zorin D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions // J. Comput. Phys. 2004. 196, N 2. 591-626.
  24. Bebendorf M., Venn R. Constructing nested bases approximations from the entries of non-local operators // Numer. Math. 2012. 121, N 4. 609-635.
  25. Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A theory of pseudo-skeleton approximations // Linear Algebra and Its Applications. 1997. 261. 1-21.
  26. Goreinov S.A., Oseledets I.V., Savostyanov D.V., Tyrtyshnikov E.E., Zamarashkin N.L. How to find a good submatrix. ICM Research Report 08-10. Hong Kong: Kowloon Tong, 2008.
  27. Behnel S., Bradshaw R., Citro C., Dalcin L., Seljebotn D.S., Smith K. Cython: the best of both worlds // Comput. Sci. Eng. 2011. 13, N 2. 31-39.
  28. Intel Math Kernel Library (http://software.intel.com/en-us/articles/intel-mkl/).
  29. Saad Y., Schultz M.H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. Sci. and Stat. Comput. 1986. 7, N 3. 856-869.
  30. Крылов А.Н. О численном решении уравнения, которым в технических вопросах определяются частоты малых колебаний материальных систем // Изв. АН СССР. VII серия. 1931. № 4. 491-539.
  31. Romanov A.N., Jabin S.N., Martynov Ya.B., Sulimov A.V., Grigoriev F.V., Sulimov V.B. Surface generalized Born method: a simple, fast, and precise implicit solvent model beyond the Coulomb approximation // J. Phys. Chem. A. 2004. 108, N 43. 9323-9327.
  32. Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 // J. Comput. Chem. 1996. 17. 490-519.
  33. Protein Data Bank (http://www.pdb.org/pdb/home/home.do).
  34. Avogadro - free cross-platform molecule editor (http://avogadro.openmolecules.net/wiki/Main_Page).
  35. Tyrtyshnikov E.E. Mosaic-skeleton approximations // Calcolo. 1996. 33, N 1. 47-57.
  36. Hackbusch W. A sparse matrix arithmetic based on mathcalH-matrices. Part I: introduction to mathcalH-matrices // Computing. 1999. 62, N 2. 89-108.
  37. Hackbusch W., Khoromskij B.N. A sparse mathcalH-matrix arithmetic. Part II: application to multi-dimensional problems // Computing. 2000. 64, N 1. 21-47.

Published

23-01-2014

How to Cite

Михалев А.Ю., Офёркин И.В., Оселедец И.В., Сулимов А.В., Тыртышников Е.Е., Сулимов В.Б. Application of the Multicharge Approximation for Large Dense Matrices in the Framework of the Polarized Continuum Solvent Model // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 9-21

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 3 > >>