Bi-Newton’s method for computing spectral projectors


  • K.V. Demyanko
  • Yu.M. Nechepurenko


Newton’s method
inverse iterations
invariant subspace
spectral projector


An efficient Newton-like method for computing the spectral projector associated with a separated group of eigenvalues near a specified shift of a large sparse matrix is proposed and justified. A number of numerical experiments with a discrete analogue of the non-Hermitian elliptic operator are discussed.





Section 1. Numerical methods and applications

Author Biographies

K.V. Demyanko

Yu.M. Nechepurenko


  1. Stewart G.W., Sun J.-G. Matrix perturbation theory. San Diego: Academic Press, 1990.
  2. Freitag M.A., Spence A. A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems // IMA J. Numer. Anal. 2008. 28. 522-551.
  3. Robbe M., Sadkane M., Spence A. Inexact inverse subspace iteration with preconditioning applied to non-Hermitian eigenvalue problems // SIAM J. Matrix Anal. Appl. 2009. 31. 92-113.
  4. Xue F., Elman H.C. Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation // Linear Algebra Appl. 2011. 435. 601-622.
  5. Saad Y. Iterative methods for sparse linear systems. Boston: PWS Publishing, 1996.
  6. El Khoury G., Nechepurenko Yu.M., Sadkane M. Acceleration of inverse subspace iteration with Newton’s method // J. Comput. Appl. Math. 2014. 259. 205-215.
  7. Годунов С.К., Нечепуренко Ю.М. Оценки скорости сходимости метода Ньютона для вычисления инвариантных подпространств // Журн. вычислит. матем. и матем. физики. 2002. 42, № 6. 771-779.
  8. Bai Z., Demmel J., Dongarra J., Ruhe A., van der Vorst H. Templates for the solution of algebraic eigenvalue problems: a practical guide. Philadelphia: SIAM, 2000.
  9. Hechme G., Nechepurenko Yu.M., Sadkane M. Efficient methods for computing spectral projectors for linearized Navier-Stokes equations // SIAM J. Sci. Comput. 2008. 31. 667-686.
  10. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.