Development of a software package for 3D modeling of multiphase multicomponent flows in nuclear power engineering

Authors

  • S.V. Dyachenko

Keywords:

multiphase flows
multicomponent flows
compressible flows
numerical simulation
parallel computing
software packages
nuclear power engineering

Abstract

Some theoretical and practical aspects related to the development of a software package for 3D modeling of multiphase multicomponent flows in nuclear power engineering are considered. A particular attention is paid to the construction of a generic model of relations between the mass, velocity, energy, volume fraction, and material components of the flow, to finding the equilibrium pressure of phases of heterogeneous systems, and to performing uniform computing for mixtures of strongly compressible phases and weakly compressible phases in a wide range of the Mach numbers. An approach to data pre-processing and post-processing is discussed. Preliminary code parallelization metrics (speed-up, efficiency, and cost of computations) are also presented.


Published

2014-04-24

Issue

Section

Section 1. Numerical methods and applications

Author Biography

S.V. Dyachenko


References

  1. Brackbill J. U., Kothe D. B., Zemach C. A continuum method for modeling surface tension // J. Comput. Phys. 1992. 100, N 2. 335-354.
  2. Scardovelli R., Zaleski S. Direct numerical simulation of free-surface and interfacial flow // Annu. Rev. Fluid Mech. 1999. 31. 567-603.
  3. Osher S., Fedkiw R. P. Level set methods: an overview and some recent results // J. Comput. Phys. 2001. 169, N 2. 463-502.
  4. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling // J. Comput. Phys. 1999. 155, N 1. 96-127.
  5. Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis // J. Comput. Phys. 2001. 169, N 2. 556-593.
  6. Takagi S., Matsumoto Y. Three-dimensional deformation of a rising bubble // Proc. of the German-Japanese Symposium on Multiphase Flow (KfK 5389). 1994. 499-512.
  7. Ryskin G., Leal L. G. Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid // J. Fluid Mech. 1984. 148. 19-35.
  8. Oran E. S., Boris J. P. Numerical simulation of reactive flow. New York: Elsevier, 1987.
  9. Hu H. H., Patankar N. A., Zhu M. Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eularian technique // J. Comput. Phys. 2001. 169, N 2. 427-462.
  10. Johnson A. A., Tezduyar T. E. 3D simulation of fluid-particle interactions with the number of particles reaching 100 // Comput. Methods Appl. Mech. Eng. 1997. 145, N 3/4. 301-321.
  11. Hou T. Y., Lowengrub J. S., Shelley M. J. Boundary integral methods for multicomponent fluids and multiphase materials // J. Comput. Phys. 2001. 169, N 2. 302-362.
  12. Pozrikidis C. Interfacial dynamics for Stokes flow // J. Comput. Phys. 2001. 169, N 2. 250-301.
  13. Glimm J., Grove J. W., Li X. L., Shyue K., Zeng Y., Zhang Q. Three dimensional front tracking // SIAM J. Sci. Comp. 1998. 19, N 3. 703-727.
  14. Yeoh G. H., Tu J. Computational techniques for multiphase flows. Oxford: Butterworth-Heinemann, 2009.
  15. Нигматулин Р.И. Динамика многофазных сред. 1. М.: Наука, 1987.
  16. Bohl W.R., Luck L.B. SIMMER-II: a computer program for LMFBR disrupted core analysis. Report LA-11415-MS. Los Alamos: Los Alamos National Laboratory, 1990.
  17. Писсанецки С. Технология разреженных матриц. М.: Мир, 1988.
  18. Базаров И.П. Термодинамика. М.: Физматлит, 1961.
  19. Flatten T., Morin A., Munkejord S. T. On solutions to equilibrium problems for systems of stiffened gases // SIAM Journal of Applied Mathematics. 2011. 71, N 1. 41-67.
  20. Samulyak R., Prykarpatskyy Y. Richtmyer-Meshkov instability in liquid metal flows: influence of cavitation and magnetic fields // Mathematics and Computers in Simulation. 2004. 65, N 4/5. 431-446.
  21. Saurel R., Abgrall R. A Simple method for compressible multifluid flows // SIAM J. Sci. Comput. 1999. 21, N 3. 1115-1145.
  22. Cordier F., Degond P., Kumbaro A. An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations // J. Comput. Phys. 2012. 231, N 17. 5685-5704.
  23. Arun K. R., Noelle S., Luk`aucov`a-Medvid’ov`a M., Munz C.-D. An asymptotic preserving all mach number scheme for the Euler equations of gas dynamics. Preprint N 348. Aachen: Inst. für Geometrie und Praktische Mathematik, 2012.
  24. Haack J., Jin S., Liu J.-G. An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations // Commun. Comput. Phys. 2012. 12. 955-980.
  25. Weiss J. M., Smith W. A. Preconditioning applied to variable and constant density flows // AIAA Journal. 1995. 33, N 11. 2050-2057.
  26. Mulas M., Chibbaro S., Delussu G., Di Piazza I., Talice M. Efficient parallel computations of flows of arbitrary fluids for all regimes of Reynolds, Mach and Grashof numbers // International Journal of Numerical Methods for Heat &; Fluid Flow. 2002. 12, N 6. 637-657.
  27. Teixeira R., Alves L., Karagozian A. R., Kelly R. E. On the solution of the compressible flow equations at small Mach numbers // Proc. of the 12th Brazilian Congress of Thermal Engineering and Sciences (November 10-14, 2008, Belo Horizonte, MG). Rio de Janeiro: ABCM Press, 2008. 101-110.
  28. Fornberg B. Generation of finite difference formulas on arbitrarily spaced grids // Math. Comp. 1988. 51, N 184. 699-706.
  29. ISO/IEC 14882:2003 Standard // (http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110; дата обращения: 13.02.2014).
  30. MPI Documents (http://www.mpi-forum.org/docs/docs.html; дата обращения: 13.02.2014).
  31. Redmine (http://www.redmine.org; дата обращения: 13.02.2014).
  32. Git (http://www.git-scm.com; дата обращения: 13.02.2014).
  33. CMake - Cross Platform Make (http://www.cmake.org; дата обращения: 13.02.2014).
  34. Doxygen (http://www.stack.nl/ dimitri/doxygen/; дата обращения: 13.02.2014).
  35. Paraview - Open Source Scientific Visualization (http://www.paraview.org; дата обращения: 13.02.2014).
  36. Tecplot (http://www.tecplot.com; дата обращения: 13.02.2014).
  37. SALOME Platform (http://www.salome-platform.org; дата обращения: 13.02.2014).
  38. METIS - Serial Graph Partitioning and Fill-Reducing Matrix Ordering // (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview; дата обращения: 13.02.2014).
  39. ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering // (http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview; дата обращения: 13.02.2014).
  40. Aztec (http://acts.nersc.gov/aztec; дата обращения: 13.02.2014).
  41. Гасилов В.А., Болдарев А.С., Дьяченко С.В., Ольховская О.Г., Карташева Е.Л., Болдырев С.Н., Багдасаров Г.А., Гасилова И.В., Бояров М.С., Шмыров В.А. Пакет прикладных программ MARPLE3D для моделирования на высокопроизводительных ЭВМ импульсной магнитоускоренной плазмы // Математическое моделирование. 2012. 24, № 1. 55-87.
  42. Gasilov V., D’yachenko S., Olkhovskaya O., Boldarev A., Kartasheva E., Boldyrev S. Object-oriented programming and parallel computing in radiative magnetohydrodynamics simulations // Parallel Computing: Architectures, Algorithms and Applications. Series: Advances in Parallel Computing. Amsterdam: IOS Press, 2008. Vol. 15, pp. 475-482.
  43. Дьяченко С.В., Гасилова И.В., Дорофеева Е.Ю. Разработка конвертера данных из интегрированной CAD-CAE системы Salome в прикладной код для численного решения начально-краевых задач методом сеток. Препринт № 36 ИПМ им. М. В. Келдыша. М., 2012.
  44. Дьяченко С.В., Багдасаров Г.А., Ольховская О.Г. Средства профилирования и анализа многопоточных приложений Oracle (Sun) Studio Performance Analyzer. Препринт № 38 ИПМ им. М. В. Келдыша. М., 2012.